

About Chung-Han Chan

- Earthquake relocation as M. Sc. in NCU
- Earthquake activity & stress evolution as PhD in NCU
- Earthquake forecast as Post-doc in GFZ
- PSHA method as Post-doc in NTU (north)
- Risk assessment as Assistant Research Fellow in NTU (north)
- PSHA for SE Asia as Senior Research Fellow in NTU (south)

*PSHA: Probabilistic Seismic Hazard Assessment

Using *weather forecast* to make decision if an umbrella is necessary

今晚明晨		明日白天			明日晚上
09/27 18:00 - 09/28 06:00					
	北部				
	基隆市	24~26°	80%		لسمي المراجع
	臺北市	24~26°	90%		2
	新北市	24~27°	90%		1 1 2
	桃園市	24~26°	90%	*	Sy.
	新竹市	24~28°	70%		
	新竹縣	24~27°	80%		
	苗栗縣	25~28°	70%		
中部					
	臺中市	26~30°	20%	۶	
	彰化縣	25~30°	20%	٦	
	南投縣	24~29°	10%		
	雲林縣	24~28°	10%	۶	
	嘉義市	25~29°	10%	۶	
	嘉義縣	25~29°	10%	۶	

發布時間: 2018/09/27 17:00 溫度單位:°C

Precipitation risk shown in *probability* Probabilistic seismic hazard maps could be references for *hazard mitigation policies*, e.g., Building codes legislation, structure site selection, or insurance rate determination

<u>Disadvantages</u>: Different PSHAs with various methods result in *mismatches* at boundaries Based on the assumption that earthquakes are *independent* to each other

Chi-Chi case...

Hazard may be *raised* by subsequent aftershocks or next larger earthquakes

Seismic burst after an event can be associated with *stress triggering*

Catalli & Chan, GJI, 2012

Outlines of this innovative approach

- Earthquake forecasting models
 - Long-term rate by smoothing Kernel
 - Short-term rate by the rate-and-state model
- Probabilistic seismic hazard assessments
 - Ground motion attenuation by GMPE⁺

Higher rate for *smaller magnitudes* - Follow Gutenberg-Richter Law

Higher rate at the *eastern offshore* - Along the plate boundary

Calculated by *smoothing Kernel* approach

Reference period: 1973-2007

Chan et al., NHESS, 2012

Higher rate for *smaller magnitudes* - Follow Gutenberg-Richter Law

Higher rate at the *eastern offshore* - Along the plate boundary

Good correlation with the forecasting event distribution

Reference period: 1973-2007 Forecast period: 2008-2009

Chan et al., NHESS, 2012

rate evolution....

Evolution of seismic rate during 2006-2010

Based on *Coulomb stress change*

Chan et al., NHESS, 2013

Evolution of seismic rate during 2006-2010

Significant rate increase near Hualien after **eq.6 (M5.1)**

Chan et al., NHESS, 2013

hazard evolution.....

Significant rise of seismic hazard in Hualien after eq. 6 Decay rapidly with time due to its small magnitude

Seismic hazard for the 475-year return period (PGA in g)

Taiwan case.....

Time (year)

Time-dependency is first applied for seismic hazard map for Taiwan; The seismic hazard can be *re-assessed* soon after next large events.

Higher hazard

- near active faults with *short* recurrence intervals,
- *long* elapsed time since the last rupture, and
- close to large earthquakes that just took place.

Chan et al., BSSA, 2017; Chan et al., SRL accepted

Some parameters are obtained from *national* hazard assessment The database is further updated based on other individual studies

Simplified alignments & multiple rupture were implemented for PSHA

Case of the Philippine Fault system

References for slip behaviours: *Aurelio* (2000) *Galgana et al.* (2007) *Hsu et al.* (2016) *Perez & Tsutsumi* (2017) *Tsutsumi et al.* (2015)

contribution to collaborators...

In addition to contributing to our PSHA, our database has been included in the *GEM hazard mosaic model* and *Temblor system*

Temblor is an enterprise providing hazard assessments for the public. Potential collaboration modes with Temblor are under discussion.

Attenuation behaviours are various between different tectonic regimes

Different GMPEs between *active crustal* and *stable continental* regimes

GMPE tests....

GMPE tests determine the attenuation behaviours in different tectonic regimes

hazard map....

GMPE: Ground Motion Prediction equation

*Based on the Poisson distribution: $10 \% < 100 \% - (100 \% - 1 \%)^{11} = 10.5 \%$

Detailed hazard assessments based on V_s^{30} map by on-site surveys *Higher* hazards for the sites *close to an active fault* or with *low* V_s^{30}

Applications...

Associated with *emergency plan*, our assessments provides information for *disaster resilience*, such as minimised risk, effective response, swift recovery

Future work:

To incorporate seismic rate based on a *dynamic model*

Our dynamic model suggests a seamount could be a rupture barrier, megathrust asperity, or initiation of a splay fault, depending on overriding plate condition.

Future work:

Ground motion attenuation based on *waveform simulation*

Good simulations for the frequency in 0.1-100 Hz fulfils the requirement of engineering purposes.

Conclusions...

About Chung-Han Chan

- Earthquake relocation as M. Sc. in NCU
- Earthquake activity & stress evolution as PhD in NCU
- Earthquake forecast as Post-doc in GFZ
- PSHA method as Post-doc in NTU (north)
- Risk assessment as Assistant Research Fellow in NTU (north)
- PSHA for SE Asia as Senior Research Fellow in NTU (south)

Thanks all of the teachers who complete me!