

Impact of the Surrounding Subduction Zones on the Tectonic Evolution of the South China Sea

Sung-Ping CHANG 張頌平 Manuel Pubellier, Matthias Delescluse

The Natural Laboratory: Taiwan Orogeny

Lin et al. (2003)

Active Tectonic in SE Asia: Example in the SCS

0 10 20 30 40

Coeval of Subduction and Rifting in the South China Sea Margin

Nirrengarten et al. (2020)

Active Fold-and-thrust Belt Performed on the Seismic Profiles

114° 116° 118°

114

116

Coeval of Subduction and Rifting in the South China Sea Margin

Modified from Pubellier et al. (2016)

Geodynamic Settings

Two Types of Basin Opening in Earth History

380 Ma (Middle Devonian)

Stampfli and Borel (2002)

230 Ma (Middle Triassic)

Objectives: Stratigraphic Correlation

Modified from Pubellier et al. (2016)

Correlation of structures and time (stratigraphy)

- Part I: Rifting, Breakup, & End of Spreading
- Part II: Subduction & Collision

Tectono-stratigraphy through the Rifting and the Seafloor Spreading

Tectono-stratigraphy on the Coeval Convergent Zone

Is There a Genetic Link between the Subduction of the PSCS and the Opening of the SCS?

- Rifting,
- Breakup
- End of spreading

- Subduction
- Collision
- Slab detachment

PART 1 – South China Sea: Seismic Data

East Vietnam Margin in the South China Sea

SE

CSDe

600

D?

NW Borneo Margin in the South China Sea

Detachment Fault Found in the Iberia Margin

Brecciated zone with finegrained, angular, mafic clasts.

Coarse-grained flasered gabbro. Dark areas represent strained pyroxene that has been replaced by amphibole.

Whitmarsh et al. (2001)

The Northern Section (SE China Margin) in the SCS

Modified from Nirrengarten et al. (2020)

Crust Thinning at the Tip of Propagator but also Elsewhere

Two Rifting Stages with Ages Diachronism along the SCS

Structure of the Distal Margin and COT

- Steep (green) and stretched (blue) segments
- The earliest magnetic anomaly (C6n, red thick arrow) is clear in the southern margin only

Juxtaposed Conjugate E Vietnam-NW Borneo Margins

Chang et al. (in revision)

Characteristics of the syn-rift II at the COT

Conjugated Margin across the N-S Segment

- Steep (abrupt) margin •
- Relatively starved syn-٠ rift succession at the COT

- 16 Ma ? - 7 A ?

Upper Oligocene (Syn-rift II)

WT (s)

Implications on the Breakup Process

14

12

- A series of en echelon pull-apart basins at 23 Ma
- These coalesced around 20 Ma

Changing Rifting and Spreading Directions

- From en echelon pull-apart basins to coalesced
- Comparison of transition stage of Sibuet et al. (2016) around 23 Ma

Sibuet et al. (2016) Tectonophysics

Rifting-Breakup through Space and Time

PART 2 - Collision at Southern Margin: MTC, Melange, Circular Basins

Proto-South China Sea Subduction

(Keenan et al., 2016; Chien et al., 2020; Rahmat et al., 2020)

Termination of the Orogeny: Slab Breakoff (or Slab Detachment)

Sapin et al. (2013)

Mobile Shale and Circular Basins around Sabah

Shale Tectonics: Induced by the Overpressure due to the Loading from Wedge or Sediments

Venezuela

Cruciani and Barchi (2016)

Duerto and MaClay (2011)

Therapeutic Volcanic Mud around Sabah

mineral-rich mud and gas slowly bubble up from deep underground.

Seismic Interpretation of Accretionary Wedge

Seismic Interpretation of Accretionary Wedge

Sheared and Undeformed Ophiolitic Basement

DIAPIRIC MELANGE

30

Deformation Associated with a Mud-Prone Body

Mud Injection

Broken Formation

Mud-prone Core

N116'51'

\$116'39'

Deposition and Remobilization of Sedimentary Mélange

Deposition and Remobilization of Sedimentary Mélange prior to the DRU

Chang et al. (2019)

Accretionary Wedge along Borneo and Palawan

Final Part: Correlation?

Final Part: Correlation?

What Happened from 23 to 16 Ma?

Direction Rearrangement

Borneo Rotation

Modified from Sapin (2014)

Heterogeneity on the Subducting Plate

Papua New Guinea

E Mediterranean Sea

Wallace et al. (2009)

Block Rotation Induced by Subducting the Heterogeneity of Plate

E Mediterranean Sea

Toroidal flows

Menant et al. (2016)

Evolution of the South China Sea Opening

Subduction-induced?

Collision-induced?

Teng and Lin (2004)

Correlation and Preliminary Plate Reconstruction for SCS and PSCS Margins

Conclusion

- There is a good correlation between divergent and convergent margins
- Collision influenced the rearrangement of seafloor spreading in the South China Sea
- Vertical motion after 16 Ma corresponded to the slab detachment

Thank You for Your Attention