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Landslides can cause the formation of dams, but these dams often fail soon after lake formation. Thus, rapidly
evaluating the stability of a landslide dam is crucial for effective hazard mitigation. This study utilizes
discriminant analysis based on a Japanese dataset consisting of 43 well documented landslide dams to
determine the significant variables, including log-transformed peak flow (or catchment area), and log-
transformed dam height, width and length in hierarchical order, which affect the stability of a landslide dam.
The high overall prediction power (88.4% of the 43 training cases are correctly classified) and the high cross-
validation accuracy (86%) demonstrate the robustness of the proposed discriminant models PHWL (with
variables including log-transformed peak flow, and log-transformed dam height, width and length) and
AHWL (with variables including log-transformed catchment area, and log-transformed dam height, width
and length). Compared to a previously proposed “DBI” index-based graphic approach, the discriminant
model AHV – which uses the log-transformed catchment area, dam height, and dam volume as relevant
variables – shows better ability to evaluate the stability of landslide dams. Although these discriminant
models are established using a Japanese dataset only, the present multivariate statistical approach can be
applied for an expanded dataset without any difficulty when more completely documented worldwide
landslide-dam data are available.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction
The generation and disappearance of landslide-dammed lakes are
the results of the complex processes of the earth's surface at the
interface between a hillslope and a valley-floor system. Understanding
the geomorphic forms and processes involved in the failure of land-
slide dams is crucial for the purpose of hazard mitigation, as well as
the reconstruction of previous events and landscape evolution (Korup,
2002). Regarding catastrophic disasters caused by outburst floods and
debris flows, which frequently occur soon after the forming of a
natural lake, a rapid assessment of landslide-dam stability is essential
(Schuster and Costa, 1986).

Three factors are generally relevant to the occurrence of failure: (1)
magnitude and rate of inflow to the dammed reservoir; (2)
dimensions of the dam; and (3) material characteristics of the dam
(Schuster and Costa, 1986). The material characteristics of landslide
dams are difficult to evaluate rapidly if not impossible (Casagli et al.,
2003). Currently, the geomorphic approach is widely used to correlate
the dam, river, and water-storage characteristics with the landslide
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dam's stability (Swanson et al., 1986; Costa and Schuster, 1988; Casagli
and Ermini, 1999; Ermini and Casagli, 2003; Korup, 2004).

Swanson et al. (1986) suggested that landslide volume and
drainage basin area are important factors contributing to the stability
of a landslide dam. Casagli and Ermini (1999) proposed that dam
height, landslide velocity and the width of the dam valley are sig-
nificant to the damming process. Ermini and Casagli (2003) utilized
the geomorphic index (DBI) by combining three important variables
(dam height Hd, dam volume Vd, and catchment area Ac) to evaluate
the stability of a landslide dam:

DBI = log
Hd � Ac

Vd

� �
: ð1Þ

A dam with DBIb2.75 will be classified as a stable dam, and one
with DBIN3.08 will be classified as an unstable dam. Incorporating
these simplistic geomorphologic analyses, GIS-basedmodelling can be
used to evaluate the potential of river blockage, upstream flooding,
and related hazards of outburst floods associated with the probable
sudden failure of landslide dams (Clerici and Perego, 2000; Korup,
2005).

The above index-based graphic approach allows for the first-order
estimation of landslide-dam stability and the regional comparison of
geomorphic boundaryconditionsnecessary for landslidedamformation
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and failure (Korup, 2004). Nevertheless, there are drawbacks to the
index-based graphic approach, such as: (1) subjective selection of the
variables; and (2) the relatively low separation performance (25% cases
went unclassified; i.e., 2.75bDBIb3.08). These two shortcomings of the
index-based graphic approach highlight its simplistic nature. Possible
improvements to this approach could be made by considering other
variables and by setting up a wider database in order to reach
conclusions based on a rigorous statistical analysis (Ermini and Casagli,
2003). Korup (2004) used discriminant analysis to objectively classify
the stable and unstable landslide dams with log-transformed geo-
morphic variables. However, that study was able to only classify 69% of
the landslide dams correctly. It is believed that the incompleteness and
varying accuracy of the data rendered the classification process
insufficient when using a discriminant model (Korup, 2004).

Costa and Schuster (1991) presented the benchmark inventory of
463 occurrences of landslide dams throughout the world. Based on a
large set of collected cases, Ermini and Casagli (2003) built an
inventory containing more than 500 cases of landslide dams.
However, only 84 case histories were documented with complete
records of their catchment area (Ac), dam height (Hd), and dam
volume (Vd). Korup (2004) compiled 232 landslide dams in New
Zealand from the literature, frommulti-temporal air photos, and from
a 25-m cell size DEM. The geomorphometric parameters of landslide
dams, their associated natural reservoirs, and the contributing
catchment areas were derived from the GIS platform. The statistical
analysis results of these variables are available, but the values of these
geomorphic parameters are not listed in the paper.

Tabata et al. (2002) reported a small inventory of 79 Japanese
landslide dams (Tabata's inventory; Supplementary Table S1), which
have been classified as stable and unstable dams. Japanese landslide
dam inventory is utilized in this study, because 43 out of 79 cases have
complete records of a total of 16 geomorphic variables which can be
statistically analyzed to study the relation between geomorphic
variables and landslide dam stability. Based on the data, the main
objectives of the present work are: (1) to objectively select the relevant
variables from Tabata's inventory and evaluate their contribution to
landslide-dam stability (without a failure associated with overtopping,
piping, or a slope failure of the dam itself); (2) to test the ability of
statistical models for predicting the stability of landslide dams; and (3)
to compare the performance of the previously proposed index-based
graphic methods with the proposed statistical models. Discriminant
analyses are performed using commercial statistical package, SPSS
(Statistical Package for the Social Sciences). The relative importance of
the relevant variables in the proposed statistical model is evaluated by
the standardized canonical discriminant coefficients of the discriminant
model. Finally, a discriminant model with the same set of variables
Fig. 1. The 16 variables reported by Tabata et al. (200
considered in the “DBI” index-based graphic approach is built using a
dataset including 84 landslide-dam cases (Ermini and Casagli, 2003) as
the training set.With Tabata's inventory including 37 cases as the target
set (none in the training set),we compare thepredictionperformance of
the landslide-dam stability by the discriminantmodel and by the index-
based graphic model (DBI index).

2. Landslide-dam data sets

Tabata et al. (2002) studied 79 landslide-dam events that occurred
in Japan. The triggering factor, geological and geomorphic character-
istics of these landslide dams (Tabata's inventory) and their longevity
have been well documented. Fig. 1 illustrates the 16 documented
geomorphic variables of these landslide dams. Table 1 lists the
definitions of these variables. The variables were mainly derived
from historical records. If the variables are not available in the
historical records, then aerial photographs, field investigations, and
topographical maps (1/25,000) were used (also listed in Table 1) to
complete the inventory. It is of note that some of the selected
variables – e.g., mean flow, peak flow, lake depth, and lake area – are
not time-invariant variables. The time interval used to derive themean
flow is from1973 to 1982. The peakflowwas the record up to 1979. The
definitions of depth and area of lakes are not clearly specified by Tabata
et al. (2002). It is speculated that the lake depth and its area are the
maximum lake depth and area, because most of the lake depth is
identical to (or slightly smaller than) the height of the landslide dam
(from river bed to overflowpoint). The variationof the dam's geometry
over time is not considered.

The reliability of the data is categorized into: (A) high reliability (the
characteristics of the landslide, dam, and lakewere well documented or
can be accurately determined from topographical maps); (B) medium
reliability (the landslide and dam can be accurately located, but the
uncertainty of the variables is higher than category A), and (C) low
reliability (the landslide and dam cannot be accurately located, and the
reliability of the data is low). InTabata's inventory (79 cases), therewere
43 landslide dams (9 stable and 34 unstable ones; the definition of a
stable landslide dam is described at the end of this section) for which
complete records of all 16 geomorphic variables are available. Among
them, 18, 21, and 4 cases are reported with high, medium, and low
reliability, respectively. The data (Supplementary Table S1) were
statistically analyzed and utilized to build the discriminant models for
classifying the stability of landslide dams.

To compare the performance of the prediction between the DBI
index-based graphic model and the discriminant model, we use the
worldwide dataset (with complete records of Ac,Hd, and Vd) of landslide
dams collected by Ermini and Casagli (2003). In total, we utilize 84well
2). Table 1 lists the definitions of these variables.



Table 1
Geomorphic variables recorded for the Japanese landslide dams (Tabata et al., 2002).

Variables Definitions

(Method used for deriving the variables if historic records are
not available)

Catchment area X1 Catchment area upstream of the stream blockage point
(Derived from the topographical maps (1/25 000) using
planimeter and digitizer)

Stream order X2 Stream size at the dammed point in the hierarchy of tributaries
(Counted from the topographical maps (1/25 000))

Mean flow X3 Mean flow of the dammed stream
(Estimated from the specific mean flow in the nearby
watershed; annual mean flow from 1973 to 1982 recorded by
stream gauge station in the nearby watershed was used to
calculate specific mean flow)

Peak flow X4 Peak flow of the dammed stream
(Estimated from the specific peak flow of a nearby watershed
with similar catchment area of the dammed stream, reported by
water resources agency in 1979)

Upstream channel
gradient X5

Mean channel gradient upstream (500–1000 m) of the stream
blockage point
(Calculated from the topographical maps (1/25,000))

Downstream channel
gradient X6

Mean channel gradient downstream (500–1000 m) of the
stream blockage point
(Calculated from the topographical maps (1/25,000))

Landslide volume X7 Volume of landslide materials
(Calculated from the landslide area and estimated averaged
slide depth)

Landslide area X8 Area of landslides that contributing material to the landslide
dam
(Derived from the topographical maps (1/25,000) using
planimeter and digitizer)

Horizontal travel
distance X9

Horizontal travel distance between the point of landslide region
and river bed
(Measured from the topographical maps (1/25,000))

Slope height X10 Vertical distance between the point of landslide region and
river bed
(Measured from the topographical maps (1/25,000))

Dam height X11 Height of landslide dam, from river bed to overflow point
(Measured from the topographical maps (1/25,000))

Dam width X12 Maximum width of landslide dam (along valley)
(Measured from the topographical maps (1/25,000))

Dam length X13 Maximum length of landslide dam (across valley)
(Measured from the topographical maps (1/25,000))

Lake depth X14 Depth of impounded lake
(Measured from the topographical maps (1/25,000))

Lake area X15 Area of impounded lake
(Derived from the topographical maps (1/25 000) using
planimeter and digitizer)

Dam volume X16 Volume of landslide dam Vd=0.5WdLdHd

(Calculated from width (Wd), length (Ld), and height (Hd);
Vd=0.5WdLdHd)
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documented case histories (40 stable dams and 44 unstable dams) in
Italy, Switzerland, Japan, Canada, the U.S., Guatemala, New Zealand,
Papua New Guinea, Peru, Tajikistan, India, and the Kyrgyz Republic
(Ermini–Casagli inventory; Supplementary Table S2). Discriminant
models are built based on the 84 cases with three log-transformed
variables (logAc, logHd, and logVd) which are identical to the ones used
for building the DBI index-based graphic models. In Tabata's inventory
(79 landslide-dam events), there were 50 cases where the catchment
area, dam height and dam volume were completely documented.
Among the 50 cases, there are 13 cases already included in the Ermini–
Casagli inventory. Therefore,we take the remained 37 Japanese cases for
model verification.

Fig. 2 shows the process for building and validating the proposed
discriminant model with Tabata and Ermini–Casagli inventories.
Forty-three Japanese cases are used to build the statistical models
(left part of Fig. 2). The performance of the proposed models is cross-
validated and the relative importance of each selected variable is then
evaluated. The Ermini–Casagli inventory (84 worldwide cases) is used
to build the statistical model with log-transformed variables identical
to those used in the DBI model (right part of Fig. 2). The performance
of the discriminant model and the DBI index-based graphic model for
predicting the stability of the 37 Japanese cases is now compared.

The definitions of stable and unstable dams are notably crucial for
the present study. The term “stable” in relation to landslide dams has
to be treated with caution, since it is not time invariant. A present
stable landslide dam might be subject to failure by extremely heavy
rainfall or a large earthquake some time later. A stable landslide dams,
based on the definition of Ermini and Casagli (2003) and Tabata et al.
(2002), is a landslide dam which has remained stable over a long
period and has not encountered a breach, thus still impounding an
existent lake. Korup (2004) defined the “stable landslide dams” in
New Zealand as: “The persistence of a landslide dammed lake for over
a decade, and usually several decades, has thus been used to assign the
stable status”. The youngest landslide dams in Ermini–Casagli and
Tabata's inventories were formed in 1994 (reported in 2003) and 1984
(reported in 2002), respectively. In other words, the definition of
“stable” in relation to landslide dams of the inventory is similar to that
adopted by Korup (2004). This definition should be appropriate from
the viewpoint of landslide dam hazard mitigation.

3. Methodology

A statistical model for predicting slope instability can be built on the
assumption that the factors which cause landslides in a region are the
same as thosewhichwill again fail in the future (Carrara et al., 2008). In
this study we try to classify the landslide dams into two groups on the
basis of the discriminant analysis of a set of variables: (1) the stable
group and (2) the unstable group. The methodology adopted in this
study is shown in a flow chart (Fig. 2) and is described briefly as follows.

3.1. Discriminant analysis

3.1.1. Categorizing the dataset
The purpose of discriminant analysis is to find a linear equation

(discriminant function) to separate two or more groups of objects
with respect to several variables simultaneously (Klecka, 1980). In this
study we categorize the data for landslide dams into stable and
unstable groups. The discriminant function has the form:

D = b0 + b1x1 + b2x2 + ::: + bnxn; ð2Þ

where D is the discriminant score; xi (i=1, 2,…, n) is the independent
variable; bi (i=0, 1, 2, …, n) is the unstandardized canonical
coefficient of the discriminant function for the i-th variable; and n is
the number of independent variables. If a damwith variable xi results
in DN0, then it is categorized into the stable group; otherwise, it will
be placed into the unstable group. The coefficients of the linear
discriminant function can be determined by solving the general
eigenvalue problem. Several multivariate statistics texts (e.g., Cooley
and Lohnes, 1971; Klecka, 1980; Davis, 2002) cover the mathematical
derivation of the coefficients.

Two basic assumptions on the statistical properties of the causative
factors in a discriminant function are: (1) each group is drawn from a
population which has a multivariate normal distribution; and (2) no
variable may be a linear combination of other variables (Klecka, 1980).
Therefore, checking the normality of the dataset and the interdepen-
dence of the previously selected 16 variables is required for statistical
susceptibility modelling.

3.1.2. Normality test of the dataset and dependency of the variables
Thedescriptive statistics related to the 16 variables for landslide dams

are first demonstrated. We test the variables for the normality of dis-
tribution using the Kolmogorov–Smirnov (K–S) test at a 5% confidence
level (α). When the distribution of the sample is not symmetrical but
positively skewed, this distribution can be transformed with logarithms
to obtain a normal distribution (Baeza and Corominas, 2001).



Fig. 2. The process and methodology used in building the discriminant models for predicting the landslide-dam stability (left) and the comparison between the proposed
discriminant model and the DBI model (right).
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The performance of a linear discriminant function is likely to be
poor when dealing with populations characterized by a strong
correlation between variables (Dillon and Goldstein, 1986). Conse-
quently, models which are composed of independent variables are
preferable. The dependency of variables can be evaluated using the
correlation coefficient. Klecka (1980) provided the method and
example for deriving a correlation coefficients matrix of a set of
variables. The proper selection of variables tominimize the correlation
coefficients between variables is important. Korup (2004) suggested
that the absolute value of the correlation coefficient 0.5–0.7
represents a moderate correlation between two variables. In this
study an absolute value of the correlation coefficient larger than 0.6 is
thought to represent a high correlation between two variables.
Accordingly, all models composed of log-transformed variables with
low to moderate correlations are identified.

3.1.3. Model selection
Based on the derived matrix of correlation coefficients, one can

determine themodelswithall possible combinationsof low tomoderate
Table 2
Descriptive statistics of geomorphic variables for Japan's landslide dams (n=43).

Geomorphic variables Minimum Maximum Mean

Catchment area (m2) X1 0.19×106 2630×106 208.46×106

Stream order X2 2 8 5.44
Mean flow (cms) X3 1 100 17.05
Peak flow(cms) X4 1 6 900 1 450.49
Upstream channel gradient X5 0.00222 0.33 0.04
Downstream channel gradient X6 0.00213 0.25 0.04
Landslide volume (m3) X7 0.009×106 130×106 14.24×106

Landslide area (m2) X8 0.003×106 2.3×106 0.33×106

Horizontal travel distance (m) X9 130 6 000 1 153.26
Slope height (m) X10 25 1 000 408.49
Dam height (m) X11 5 190 50.81
Dam width (m) X12 90 3 300 420.47
Dam length (m) X13 50 700 294.60
Lake depth (m) X14 4.50 190 47.69
Lake area (m2) X15 0.002×106 18×106 1.06×106

Dam volume (m3) X16 0.0045×106 26×106 3.60×106
correlation variables (those with absolute value of the correlation
coefficientb0.6). One challenge lies in: how does one find the most
discriminant model from all of the models with low to moderate
correlation variables? Wilks' lambda is frequently used to test whether
there are differences between the means of identified groups for a
combination of dependent variables selected by a discriminant model
(Klecka, 1980). Because Wilks' lambda is a kind of inverse measure,
values ofWilks' lambdawhich are near zero denote high discrimination
between groups. Generally, if the significance of a discriminantmodel is
less than 0.05, then this represents sufficient discriminatory power. We
use the significance level of Wilks' lambda to screen out the suitable
models among the identified models with low to moderate correlation
variables.

3.1.4. Relative importance of the variables influencing the landslide-dam
stability

After suitable models with relevant log-transformed variables are
identified, the relative importance of each variable in the prediction
model can be evaluated using the standardized canonical discriminant
S.E. Standard deviation Median Skewness Kurtosis

65.79×106 431.42×106 60×106 4.51 24.23
0.20 1.32 6 −0.758 0.71
3.92 25.73 5 1.89 2.61
285.53 1 872.36 750 1.62 1.63
0.0092 0.06 0.0143 3.23 12.98
0.0085 0.06 0.0200 2.86 8.65
4.41×106 28.92×106 3.7×106 3.14 9.71
0.07×106 0.48×106 0.16×106 2.77 7.98
181.45 1 189.88 830 2.71 8.22
35.48 232.63 370 0.71 −0.08
5.93 38.89 45 1.36 2.75
75.20 493.09 300 4.97 28.82
29.17 191.30 250 0.75 −0.64
5.79 37.97 38 1.57 3.69
0.43×106 2.84×106 0.28×106 5.36 31.48
0.9×106 5.92×106 1.2×106 2.54 6.06



Table 3
Kolmogorov–Smirnov (K–S) test for data normality.

Original geomorphic
variables

Confidence
level α

Log-transformed
variables

Confidence
level α

X1 (catchment area) 0.000 LX1 (log X1) 0.587
X2 (stream order) 0.028 LX2 (log X2) 0.019
X3 (mean flow) 0.000 LX3 (log X3) 0.388
X4 (peak flow) 0.021 LX4 (log X4) 0.479
X5 (upstream channel gradient) 0.005 LX5 (log X5) 0.353
X6 (downstream channel gradient) 0.003 LX6 (log X6) 0.898
X7 (landslide volume) 0.000 LX7 (log X7) 0.377
X8 (landslide area) 0.001 LX8 (log X8) 0.741
X9 (horizontal travel distance) 0.028 LX9 (log X9) 0.957
X10 (slope height) 0.493 LX10 (log X10) 0.550
X11 (dam height) 0.572 LX11 (log X11) 0.515
X12 (dam width) 0.009 LX12 (log X12) 0.785
X13 (dam length) 0.180 LX13 (log X13) 0.584
X14 (lake depth) 0.485 LX14 (log X14) 0.531
X15 (lake area) 0.000 LX15 (log X15) 0.864
X16 (dam volume) 0.000 LX16 (log X16) 0.847
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coefficient (SCDC). The relative importance of the log-transformed
variable for group characterization grows with an increasing SCDC.
The formulation for deriving SCDC from the unstandardized canonical
coefficients can be found in Klecka (1980).

3.2. Evaluation of the performance of a predictive model

A confusion matrix is often used to demonstrate the performance
of a prediction model. Once a characterizing threshold has been
adopted, the binary predictions can be compared with the samples,
allowing for the construction of the confusion matrix. The confusion
matrix shows the portion of correctly and incorrectly predicted
observations, for both stable and unstable landslide dams. We can
then compare the model's efficiency, which is evaluated by the
proportion of correctly classified observations, to different discrimi-
nant models with log-transformed variables.

Cross-validation is frequently used to test the reliability and
robustness of a statistical model (Carrara et al., 2008). We split the
dataset (43 cases) randomly into: (1) the training set (17 unstable and
five stable); and (2) the target set (17 unstable and four stable). We
next evaluate the predictive success of the model, built on the training
set, by using the target set. The proportion of correctly classified
observations is calculated to illustrate the prediction ability of the
proposed statistical models.

Drawbacks exist when evaluating the predictive model with a
confusion matrix, as they are highly dependent on the proportion of
positive and negative groups in the sample (Begueria, 2006).
Alternatively, the prediction performance of a predictive model can
Table 4
Matrix showing the correlation coefficients of logtransformed geomorphic variables.

Catchment (C) Landslide (L)

LX1 LX3 LX4 LX5 LX6 LX7 LX8 LX9

C LX1 1.000 0.866 0.926 −0.773 −0.726 0.362 0.383 0
LX3 1.000 0.780 −0.716 −0.797 0.186 0.206 0
LX4 1.000 −0.759 −0.706 0.395 0.410 0
LX5 1.000 0.751 0.027 −0.059 −0
LX6 1.000 0.013 −0.010 −0

L LX7 1.000 0.818 0
LX8 1.000 0
LX9 1.
LX10

D LX11

LX12

LX13

LX14

LX15

LX16

Values in Italic show correlation coefficientsb0.6.
be evaluated via a Relative Operating Characteristic (ROC) diagram,
which has been widely used to measure prediction potential of
landslide susceptibility models (e.g., Chung and Fabbri, 2003; Chang
et al., 2007; Chen et al., 2007; Carrara et al., 2008; Lee et al., 2008a,b). In
the ROC graph the false alarm rate (FAR) is plotted on the horizontal
axis and the hit rate (HR) on the vertical axis. HR is the fraction of
positive occurrences of dam failure that have been correctly predicted,
while FAR is the fraction of incorrectly predicted cases that did not
occur (Swets,1988). A larger area under the ROC Curve (AUC) indicates
bettermodel prediction (AUC index ranges from0.5 formodelswith no
predictive capability to 1.0 for models with perfect predictive power).
These discriminant analyses are carried out using the commercial
statistical package, SPSS (Statistical Package for the Social Sciences).

4. Results

4.1. Descriptive statistics and normality test of variables

Table 2 lists the descriptive statistics of 16 variables (X1–X16).
Basically, the catchment area upstream of a blockage point in the
Japanese dataset (0.19–2 630 km2) falls within the same order as the
NewZealand landslidedams (0.2–4492km2) reported byKorup (2004).
However, the mean dam volume (3.6 Mm3) of the studied dataset is
about one order smaller than that for the worldwide dataset (rainfall
triggered: 31.1 Mm3; earthquake triggered: 80.2 Mm3) as reported by
Ermini and Casagli (2003) and about two orders smaller than that of
Korup's dataset (302.6 Mm3). The statistics results indicate the large
scatter nature of the geomorphic variables of landslide dams. It is of note
that the following statistical approach should be verified carefully and
can only be applied to those cases with similar characteristics.

The confidence levels of the Kolmogorov–Smirnov (K–S) test for
the 16 variables are calculated and listed in Table 3. From the second
column of Table 3, it can be seen that most of the variables, where
αb0.05, are not normal-distribution variables. Korup (2004) indicated
that the variables of landslide dams are log-normal distribution
variables, because the skewness and kurtosis of the variables are high.
After the log-transformation of the selected variables (denoted as
LX1–LX16) is taken, the confidence level of the K–S test αN0.05 implies
that the geomorphic variables are distributed in the log-normal
manner except the stream order (LX2). However, LX2 is ruled out in
the following analysis since the catchment area is a similar indicator of
stream order.

4.2. Correlation coefficients of the log-transformed geomorphic variables

The selected log-transformed variables are categorized as Catch-
ment (C), landslide (L), and landslide dam (lake) (D) groups (Table 4).
Dam and lake (D)

LX10 LX11 LX12 LX13 LX14 LX15 LX16

.481 0.518 −0.079 0.457 0.238 −0.103 0.640 0.195

.291 0.266 −0.187 0.337 −0.034 −0.230 0.435 −0.032

.467 0.607 −0.101 0.386 0.180 −0.132 0.524 0.159

.193 −0.229 0.354 −0.118 −0.009 0.382 −0.332 0.189

.070 −0.047 0.307 −0.187 0.128 0.316 −0.278 0.199

.671 0.653 0.338 0.655 0.559 0.347 0.587 0.660

.661 0.662 0.235 0.612 0.437 0.243 0.517 0.566
000 0.850 −0.001 0.330 0.342 0.031 0.460 0.295

1.000 0.060 0.365 0.319 0.061 0.412 0.331
1.000 0.328 0.535 0.982 0.489 0.730

1.000 0.465 0.315 0.617 0.693
1.000 0.555 0.752 0.817

1.000 0.490 0.728
1.000 0.724

1.000



Table 5
Wilks' Lambda significance level of 68 models with combinations of low to moderate
correlation variables (log-transformed variables).

Number Models with
different
variable
combinations

Wilks'
Lambda
significance
level

Number Models with
different variable
combinations

Wilks'
Lambda
significance
level

1 LX1. LX7. LX11.
LX13

0.002 35 LX4. LX9. LX12.
LX13. LX14

a
1.96×10−4

2 LX1. LX7. LX13.
LX14

0.001 36 LX4. LX9. LX14. LX15 0.001

3 LX1. LX8. LX11.
LX13

0.002 37 LX5. LX7. LX11. LX13 0.004

4 LX1. LX8. LX13.
LX14

0.001 38 LX5. LX7. LX11. LX15 0.017

5 LX1. LX9. LX11.
LX12. LX13

0.001 39 LX5. LX7. LX13. LX14 0.002

6 LX1. LX9. LX12.
LX13. LX14

4.43×10−4 40 LX5. LX7. LX14. LX15 0.013

7 LX1. LX10. LX11.
LX12. LX13

0.001 41 LX5. LX8. LX11. LX13 0.003

8 LX1. LX10. LX12.
LX13. LX14

4.55×10−4 42 LX5. LX8. LX11. LX15 0.013

9 LX3. LX7. LX11.
LX13

0.006 43 LX5. LX8. LX13. LX14 0.002

10 LX3. LX7. LX11.
LX15

0.010 44 LX5. LX8. LX14. LX15 0.010

11 LX3. LX7. LX13.
LX14

0.004 45 LX5. LX9. LX11. LX12.
LX13

0.006

12 LX3. LX7. LX14.
LX15

0.007 46 LX5. LX9. LX11. LX15 0.018

13 LX3. LX8. LX11.
LX13

0.005 47 LX5. LX9. LX12.
LX13. LX14

0.004

14 LX3. LX8. LX11.
LX15

0.009 48 LX5. LX9. LX14. LX15 0.014

15 LX3. LX8. LX13.
LX14

0.003 49 LX5. LX10. LX11.
LX12. LX13

0.003

16 LX3. LX8. LX14.
LX15

0.006 50 LX5. LX10. LX11.
LX15

0.013

17 LX3. LX9. LX11.
LX12. LX13

0.003 51 LX5. LX10. LX12.
LX13. LX14

0.002

18 LX3. LX9. LX11.
LX15

0.010 52 LX5. LX10. LX14.
LX15

0.010

19 LX3. LX9. LX12.
LX13. LX14

0.002 53 LX6. LX7. LX11. LX13 0.002

20 LX3. LX9. LX14.
LX15

0.007 54 LX6. LX7. LX11. LX15 0.003

21 LX3. LX10. LX11.
LX12. LX13

0.001 55 LX6. LX7. LX13. LX14 0.002

22 LX3. LX10. LX11.
LX15

0.008 56 LX6. LX7. LX14. LX15 0.003

23 LX3. LX10. LX12.
LX13. LX14

0.001 57 LX6. LX8. LX11. LX13 0.001

24 LX3. LX10. LX14.
LX15

0.005 58 LX6. LX8. LX11. LX15 0.002

25 LX4. LX7. LX11.
LX13

0.001 59 LX6. LX8. LX13. LX14 0.001

26 LX4. LX7. LX11.
LX15

0.001 60 LX6. LX8. LX14. LX15 0.002

27 LX4. LX7. LX13.
LX14

3.86×10−4 61 LX6. LX9. LX11. LX12.
LX13

0.001

28 LX4. LX7. LX14.
LX15

0.001 62 LX6. LX9. LX11. LX15 0.003

29 LX4. LX8. LX11.
LX13

0.001 63 LX6. LX9. LX12.
LX13. LX14

0.001

30 LX4. LX8. LX11.
LX15

0.002 64 LX6. LX9. LX14. LX15 0.003

31 LX4. LX8. LX13.
LX14

4.44×10−4 65 LX6. LX10. LX11.
LX12. LX13

d
3.20×10−4

32 LX4. LX8. LX14.
LX15

0.001 66 LX6. LX10. LX11.
LX15

0.001

33 LX4. LX9. LX11.

LX12. LX13
c

3.09×10−4 67 LX6. LX10. LX12.

LX13. LX14
b

2.98×10−4

34 LX4. LX9. LX11.
LX15

0.001 68 LX6. LX10. LX14.
LX15

0.001

a–dThe most significant models with the lowest significant level.

Table 6
Overall prediction power and the cross-validation accuracy of the four most significant
discriminant models.

Model number in Table 5
(variablesa)

Wilks' Lambda
significance level

Percentage of landslide dams
correctly classified

Whole dataset
(43 cases)

Cross
validation

33 (LX4, LX9, LX11, LX12, LX13) 3.09×10−4 88.4% 83.7%
35 (LX4, LX9, LX12, LX13, LX14) 1.96×10−4 88.4% 83.7%
65 (LX6, LX10, LX11, LX12, LX13) 3.20×10−4 88.4% 81.4%
67 (LX6, LX10, LX12, LX13, LX14) 2.98×10−4 86.0% 81.4%

a LX4 (log-transformed peak flow), LX6 (log-transformed downstream channel
gradient), LX9 (log-transformed horizontal travel distance), LX10 (log-transformed
slope height), LX11 (log-transformed dam height), LX12 (log-transformed dam width),
LX13 (log-transformed dam length), and LX14 (log-transformed lake depth).
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The within-group correlation between the catchment group and the
landslide group is relatively high. Utilizing the correlation coefficients
matrix, we can determine the models with all possible combinations
of low to moderate correlation variables (absolute value of the
correlation coefficientb0.6, Italic in Table 4). Accordingly, 68 models
(Table 5) are identified with different variable combinations, all of
which are absolute value correlation coefficients between two
variables less than 0.6. Notably, the log-transformed dam volume
LX16 does not appear in Table 5 since in the Japanese cases the dam
volume was derived from dam geometry.

4.3. Identifying significant models

The suitability of the 68 statistic models for predicting the stability
of landslide dams using relatively independent log-transformed
variables can be objectively indicated by the Wilks' Lambda
significance level. Table 5 shows the Wilks' Lambda significance
level for the 68 models obtained with different variable combinations.
It should be noted that each model can be further categorized into
sub-models with the combination of the selected log-transformed
variables. All Wilks' Lambda significance levels are less than 0.05,
implying all 68 models are significant.

The most significant predictive models with the lowest Wilks'
Lambda significance level are models 33, 35, 65, and 67. Table 6 shows
the overall prediction power (percentage of landslide dams correctly
classified) and the cross-validation accuracy of these models. Models
33 and 35 are superior to models 65 and 67 either from the overall
prediction power or cross-validation accuracy. The selected variables
for model number 33 (LX4, LX9, LX11, LX12, LX13) are almost identical to
those of model number 35 (LX4, LX9, LX12, LX13, LX14), except that log-
transformed dam height (LX11) is selected instead of log-transformed
lake depth (LX14). Since lake depth is apt to vary, a combination of log-
transformed peak flow, horizontal travel distance, dam height, dam
Fig. 3.Discriminant score distribution (DN0 stable, Db0 unstable) of model PTHWL_Dis
for the stability of 43 landslide dams.



Table 8
Standardized canonical discriminant coefficient (SCDC) of four log-transformed
variables (PHWL_Dis model).

Variables (log-transformed) SCDC

Peak flow (LX4) −1.045
Dam height (LX11) −0.788
Dam width (LX12) 0.577
Dam length (LX13) 0.332
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width, and dam length (LX4, LX9, LX11, LX12, LX13) is considered as the
most suitable model (model number 33) and will be analyzed and
discussed further. The definitions of the variables in the selected
model 33 are indicated in Table 1 and illustrated in Fig. 1.

4.4. Discriminant models

4.4.1. Model PTHWL
The statistical model containing parameters LX4, LX9, LX11, LX12,

and LX13 (log-transformed Peak flow, horizontal Travel distance, dam
Height, dam Width, and dam Length) is referred to as the PTHWL
model (model number 33). A discriminant model (PTHWL_Dis) is
built on the basis of 34 unstable dams and nine stable dams as follows:

D = − 3:06LX4 + 0:74LX9 − 4:46LX11 + 4:08LX12 + 2:10LX13 − 3:65 ð3Þ

If a dam with variables xi results in DN0, then it is moved into the
stable group; otherwise, it will be moved into the unstable group.
Fig. 3 shows the classification results for the discriminant model
(PTHWL_Dis). It is observed that seven out of the nine stable landslide
dams and 31 out of the 34 unstable landslide dams are correctively
classified by the discriminant model. The overall prediction power
(percentage of landslide dams correctly classified) is 88.4%. The cross-
validation accuracy of model PTHWL_Dis is 83.7%.

Table 7 SCDC of the five variables. The LX4 (log-transformed peak
flow) has the largest SCDC, which indicates that peak flow plays the
most important role in the discriminate stability of landslide dams. If a
variable has a negative SCDC, then it represents a negative effect on
the stability of a landslide dam. Accordingly, the stability of landslide
dams decreases as the log-transformed peak flow (LX4) and/or dam
height (LX11) increases. Among the five variables selected, SCDC of the
log-transformed horizontal travel distance (LX9) is the lowest, which
means that LX9 is, in this case, a relatively unimportant variable
influencing the stability of landslide dams.

4.4.2. Model PHWL
Since the importance of LX9 on the predictability of the model is

insignificant, another model is proposed. The statistical model contain-
ing parameters LX4, LX11, LX12, and LX13 (log-transformed Peak flow,
dam Height, dam Width, and dam Length), which is referred to as the
PHWL model, can be derived using discriminant analysis (PHWL_Dis):

D = − 2:94LX4 − 4:58LX11 + 4:17LX12 + 2:39LX13 − 2:52 ð4Þ

The overall prediction power of the models is 88.4%, which is
identical to that of PTHWL_Dis. The cross-validation accuracy of model
PHWL_Dis is 86.0%, which is even higher than that of PTHWL_Dis. This
indicates that the statistical model PHWL_Dis is more robust when the
variable of log-transformed horizontal travel distance is eliminated. As
compared in Table 6, model PHWL_Dis is more significant (signifi-
cance level 1.09×10−4) than models 33, 35, 65, and 67. Regarding the
relative importance of the relevant variables in the models, log-
transformed peak flow (LX4) is still the most significant variable
influencing landslide-dam stability, and log-transformed dam height
(LX11), dam width (LX12), and dam length (LX13), in sequential order,
are less significant, based on the SCDC (Table 8).
Table 7
Standardized canonical discriminant coefficient (SCDC) of five log-transformed
variables (PTHWL_Dis model).

Variables (log-transformed) SCDC

Peak flow (LX4) −1.083
Horizontal travel distance (LX9) 0.122
Dam height (LX11) −0.763
Dam width (LX12) 0.562
Dam length (LX13) 0.291
4.4.3. Model AHWL
Due to the fact that there is often limited time for hazardmitigation

after the formation of a landslide dam, a rapid evaluation of the
stability of that dam is required. An empirical statistical model such as
Eq. (4) could provide a first-order estimation of the landslide dam's
stability. However, peak flow is not always available, because only a
few dammed rivers in mountainous areas are accurately gauged.

It is well recognized that peak flow correlates well with the
catchment area (McCuen, 1998). Using the datasets of Tabata et al.
(2002), a linear equation in log–log scale (least squares fitting) can be
derived (Fig. 4):

P = 16:12A0:88
c ð5Þ

where P is the peak flow (m3/s) and Ac (m2) is the catchment area.
We now propose a replacement of the log-transformed peak flow by
log-transformed catchment area in the discriminant model.

The statistical model containing parameters LX1, LX11, LX12, and
LX13 (log-transformed catchment Area, dam Height, dam Width, and
dam Length), which is referred to as the AHWL model, is a sub-model
of model 5 shown in Table 5, only excluding the parameter of the log-
transformed horizontal travel distance (LX9; insignificant variable as
demonstrated previously). After discriminant analysis, we derive the
following equation (AHWL_Dis):

D = − 2:62LX1 − 4:67LX11 + 4:57LX12 + 2:67LX13 + 8:26 ð6Þ

The significance level of this model is 2.31×10−4, indicating that
the model is significant for classifying the stability of landslide dams
given the relevant variables. The overall prediction power and cross-
validation accuracy of AHWL_Dis are 88.4% and 86.0%, respectively,
which are identical to those of model PHWL_Dis.
Fig. 4. The relation between peak flow (P) and catchment area (Ac) based on the dataset
of 59 landslide dams in Tabata et al. (2002).



Table 10
Confusion matrix of the discriminant models.

Model Actual groups Number
of
landslide
dams

Predicted group membership

Group 1 (stable) Group 2 (unstable)

PTHWL_Dis Group 1 (stable) 9 77.8% 22.2%
Group 2 (unstable) 34 8.8% 91.2%
Percentage of landslide dams correctly classified:
88.4 (whole dataset; 43 cases)
83.7 (cross-validation)

PHWL_Disa Group 1 (stable) 9 77.8% 22.2%
Group 2 (unstable) 34 8.8% 91.2%
Percentage of landslide dams correctly classified:
88.4 (Whole dataset; 43 cases)
86.0 (cross-validation)

AHWL_Disb Group 1 (stable) 9 77.8% 22.2%
Group 2 (unstable) 34 8.8% 91.2%
Percentage of landslide dams correctly classified:
88.4 (Whole dataset; 43 cases)
86.0 (cross-validation)

a Proposed discriminant model (Eq. (4)).
b Proposed discriminant model (Eq. (6)).
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Since the log-transformed peak flow (LX4) is the most significant
variable in the PHWL_Dis model, the substituted log-transformed
catchment area (LX1) is not surprisingly still evaluated as being the
most influential variable, according to standardized canonical dis-
criminant coefficient (Table 9). The rest of the variables have a
significance ranking identical to those obtained from the predictive
model PHWL_Dis.

5. Discussion

5.1. Factors dominating the instability of landslide dams

Three failure mechanisms of landslide dams are identified:
overtopping, piping, and slope failure (Schuster and Costa, 1986;
Swanson et al., 1986). Of these, overtopping is the most important one
(Schuster and Costa, 1986). Therefore, it is logical to select the peak
flow or catchment area of a blocked stream as the most important
variable contributing to the stability of landslide dams. This is why the
catchment area is frequently incorporated into the index-based
graphic approach to classify the stability of a landslide dam
(Impoundment index, dimensionless impoundment index, and Basin
Index proposed by Casagli and Ermini,1999; Ermini and Casagli, 2003;
Korup, 2004, respectively).

The volume of a landslide dam, which reflects a “resisting” force as
opposed to the catchment area as a “removing” force (Korup, 2004),
plays an important positive role in the stability of landslide dams. The
dam height, which might correlate with the volume of a landslide
dam, has a negative effect on the stability of a landslide dam, because
the higher the dam is, the larger the seepage driving force. The
dimensionless impoundment index DBI fully accounts for the above
combined effects of stream flow and dam geometry.

Three points need to be highlighted in our study. First, discrimi-
nant analysis is a rigorous and relatively objective procedure for
finding the four most relevant variables from the 16 variables listed in
Table 1, although the discriminant analysis yields a similar set of
relevant variables as the index-based graphic approach. Secondly, the
graphically derived critical thresholds of the dimensionless impound-
ment index assume the log-transformed volume and height of a
landslide dam as the relevant variables. However, these two log-
transformed variables are not independent variables (see Table 4;
correlation coefficient=0.730 represents a high correlation between
LX11 and LX16), although there is no inherent need for independence of
variables when using dimensionless impoundment index.

Very often, the dam volume is derived from the geometry of the
dam (i.e., height, width, and length). In our discriminant models
PHWL and AHWL, dam geometry, including log-transformed dam
height, width, and, length are treated as independent variables
(correlation coefficient=0.328, 0.465, and 0.535 represents a corre-
sponding low to medium correlation between LX11 and LX12, LX12 and
LX13, and LX11 and LX13). Last but not the least, the index-based
graphic approach provides little information about the relative
importance of each selected variable as it pertains to the stability of
a landslide dam.

Aside from the most significant variables (log-transformed peak
flow or catchment area), discriminant analysis successfully demon-
strates that the log-transformed dam height (LX11) has a stronger
Table 9
Standardized canonical discriminant coefficient (SCDC) of four log-transformed
variables (AHWL_Dis model).

Variables (log-transformed) SCDC

Catchment area (LX1) −1.085
Dam height (LX11) −0.842
Dam width (LX12) 0.663
Dam length (LX13) 0.390
impact on dam stability than the other two geometrical variables (LX12

and LX13) and it makes a negative contribution to the stability of a
landslide dam. On the other hand, both the log-transformed dam
width (LX12) and length (LX13) have positive effects on a dam's
stability. It also appears that the log-transformed damwidth along the
channel always has a larger contribution to dam stability than the dam
length from their SCDC.

5.2. Quality of the discriminant models

In this study we adopt the widely-used cross-validation technique
to assess the quality of all of the proposed discriminant models. Some
arguments may arise since the models are not validated using a
dataset independent of the one used for training. Carrara et al. (2008)
discussed the difficulty of validating landslide susceptibility models
with datasets that are separated from the training set either spatially
or temporally. More cases with complete records of different relevant
variables are required to eliminate the drawback of multivariate
analyses as stated by Korup (2004). He mentioned “…incompleteness
and varying accuracy of data render the use of multivariate analyses
for meaningful differentiation, classification, or stability prediction
Fig. 5. ROC curves from the proposed discriminant models: PHWL and AHWL.
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problematic.” The development of new technology for data gathering
would be very helpful and will be discussed later.

Table 10 lists the confusion matrices of all the tested discriminant
models. It seems that the five-variable model PTHWL_Dis could be
replaced by the four-variablemodel PHWL_Dis since the latter one has
a better performance for characterizing the stability of landslide dams
(with a higher percentage of landslide dams correctly classified). The
performance of predictive models PHWL_Dis and AHWL_Dis are
equivalently good.

The ROC plot is a convenient tool for decision-making in a risk
management context (Begueria, 2006). Fig. 5 provides the ROC curves
of the tested models. The performance of the proposed discriminant
models PHWL_Dis (Eq. (4); AUC=93.5%) and AHWL_Dis (Eq. (6);
AUC=90.5%) for predicting the stability of landslide dams is reason-
ably good. It should be noted that we did not further separate the 43
datasets into the subsets of earthquake-induced and heavy rainfall-
induced landslide dams to construct the respective discriminant
models due to insufficient data sets.

5.3. Discriminant models and DBI index-based graphic method

Korup (2004) concluded that the index-based graphic method is a
promising, preliminary approach for the assessment of landslide-dam
stability. Ermini and Casagli (2003) used a DBI index (DBIb2.75
stable; DBIN3.08 unstable) to classify 84 landslide dams (training set)
with an overall prediction power of 75.0%. The rest of the 25% cases
went unclassified (2.75bDBIb3.08).

To validate the index-based graphic approach, we use the DBI index
proposed by Ermini and Casagli (2003) to classify 37 Japanese landslide
dams (target set: 13 cases identical to those also in the worldwide
dataset are removed). Only 64.9% of the 37 cases are correctly classified.
The numberof unclassified (ormiss-classified) landslidedams increases
to 35.1%. It is likely the low prediction rate of theDBImodel is due to the
fact that some damvolumes Vd are derived from the dam geometry, i.e.,
Vd=0.5WdLdHd (Wd=width; Ld=length; Hd=height) in Tabata's
inventory. Therefore, the influence of dam height would be cancelled
out in the DBI index.

We also use the worldwide dataset (84 landslide dams) (training
set) to build AHV models with three variables (log-transformed
catchment area LX1, dam height LX11, and dam volume LX16). The
discriminant model AHV_Dis is as follows:

D = − 2:13LX1 − 4:08LX11 + 2:94LX16 + 4:09 ð7Þ

The overall prediction power of the AHV_Dis is 88.1%, while the
cross-validation accuracy is 83.3%. Using Eq. (7), the 37 Japanese
landslide dams (target set), collected by Tabata et al. (2002), are
classified into either stable or unstable landslide dams. The overall
prediction power is 70.1% for model AHV_Dis. From this it can be seen
that the discriminantmodels have a better performance than the index-
based graphic approach does (overall prediction power is 64.9%).

We further use discriminant analysis to identify the significance of
the three variables used. For the worldwide dataset, log-transformed
damvolume is themost significant variable influencing the stability of a
landslide dam (SCDC=1.759). The remaining two variables, i.e., log-
transformed dam height (SCDC=−0.970) and catchment area
(SCDC=−0.862), have close importance and a negative influence on
the stability of a dam. Notably, the correlation between log-transformed
damheight and damvolume (0.730) is relatively high.Multi-colinearity
problems may affect the variable-importance evaluation and the
prediction ability of the derived discriminant models. Eq. (7) is only
used solely for demonstrating the prediction performance between the
discriminant models and the index-based graphic approach.

In summary, although the quality and accuracy of the proposed
discriminant models are adequate within an order-of-magnitude
scale, the problem of underreporting the landslide dam cases still
somewhat exists, as stated by Korup (2004). It should be mentioned
that the proposed statistical models must be used with caution.
Recently, high resolution airborne LiDAR has been successfully utilized
to evaluate the geomorphic characteristics of landslide processes (e.g.
McKean and Roering, 2004; Chang et al., 2005; Chen et al., 2006).
Developments in airborne LiDAR technologies, together with well
developed GIS technologies, should permit the evaluation of the
geomorphic characteristics of newly formed landslide dams and their
stability in a more efficient, time-saving way and on a regional scale.

The development of new techniques for gathering the required
information on the proposed models should greatly enhance the
ability of the models to predict the stability of landslide dams. It is
expected that records of landslide dams and complete geomorphic
variables will be accumulated quickly after the new technique
becomes more widely used. Additionally, increasing data availability
and GIS-based geospatial extrapolation capability should expand the
scope for future research to the formulation of regional susceptibility
models for landslide-driven stream blockages based on these catch-
ment parameters. The proposed discriminant models could serve as
preliminary input for simulating the evolution of a landslide dam.

6. Conclusions

A method of rigorous discriminant analysis to quantitatively
predict the stability of a landslide dam using relevant geomorphic
variables has been presented herein. Based on 43 Japanese training
cases, the log-transformed peak flows (or alternatively, the catchment
area) are identified as the most significant geomorphic variables
influencing the stability of a landslide dam. The log-transformed dam
height, with a negative contribution to the stability of a landslide dam,
is the second most significant variable. The log-transformed dam
width and length have a similar positive effect on a dam's stability.
Accordingly, the results provide a ranking of the relevant variables
contributing to the stability of a landslide dam, which are not
indicated in the current graphic approach adopted worldwide.

The good performance of the proposed discriminant models is
indicated by the significant levels, overall success rate in the confusion
matrices, and AUC of the ROC curves. The significance level of the
PHWL model (log-transformed peak flow, dam height, dam width,
and dam length) and the AHWL model (log-transformed catchment
area, dam height, damwidth, and dam length) is far less than 0.05. The
AUC values of these two models are larger than 90%. More than 88.4%
of landslide dams in the 43 training cases are correctly classified using
the proposed four variable discriminantmodels. A high overall success
rate for the cross-validation confirms the robustness of the proposed
models when implemented to classify the stability of a landslide dam.
It should be noted that the proposed discriminant models was built
using a dataset of Japanese landslide dams only. The samemultivariate
statistical approach can be applied for an expanded dataset without
any difficulty when more completely documented worldwide land-
slide-dam data is available. The implications of the present results for
landslide dams elsewhere can be addressed in the future.

Finally, we have used the 84 cases of landslide dams (training
dataset) reported by Ermini and Casagli (2003) to build a simplified
three-variable (log-transformed catchment area, dam height, and
dam volume) discriminant AHV model. Compared to the DBI model,
where 64.9% of the Japanese cases were correctly classified, we have
obtained a higher success rate for the AHV model, 70.1%, in its
classification of 37 landslide dams, in spite of the possible multi-
collinearity problem. In summary, the discriminant statistical model is
promising to preliminarily assess the stability of landslide dams.
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