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Abstract—In this paper we consider the statistics of the after-

shock sequence of the m = 7.65 20 September 1999 Chi–Chi,

Taiwan earthquake. We first consider the frequency-magnitude

statistics. We find good agreement with Gutenberg–Richter scaling

but find that the aftershock level is anomalously high. This level is

quantified using the difference in magnitude between the main

shock and the largest inferred aftershock Dm�: Typically, Dm� is in

the range 0.8–1.5, but for the Chi–Chi earthquake the value is

Dm� = 0.03. We suggest that this may be due to an aseismic slow-

earthquake component of rupture. We next consider the decay rate

of aftershock activity following the earthquake. The rates are well

approximated by the modified Omori’s law. We show that the

distribution of interoccurrence times between aftershocks follow a

nonhomogeneous Poisson process. We introduce the concept of

Omori times to study the merging of the aftershock activity with

the background seismicity. The Omori time is defined to be the

mean interoccurrence time over a fixed number of aftershocks.

Key words: Earthquakes, aftershocks, Omori times,

interoccurrence times.

1. Introduction

The behavior of aftershock sequences has been

discussed widely (i.e. KISSLINGER 1996). There are

three applicable scaling laws: (1) The Gutenberg–

Richter (GR) law for frequency-magnitude scaling of

aftershocks (GUTENBERG and RICHTER 1954). The

number N of earthquakes with magnitudes greater than

or equal to m is well approximated by the relation:

log10 Nð�mÞ ¼ a� bðmÞ: ð1Þ

where b is the b-value and a is a measure of seismic

intensity. (2) Båth’s law for the difference between

the magnitude of the main shock and the largest

aftershock. This law states that the difference in

magnitude, Dm, between the main shock and its

largest aftershock is approximately constant inde-

pendent of the magnitude of the main shock

Dm ¼ mms � mmax as ð2Þ

where mms is the magnitude of the main shock and

mmax as is the magnitude of the largest aftershock,

typically Dm & 1.2 (BÅTH 1965). Many studies have

been carried out regarding the statistical variability of

Dm (VERE-JONES 1969; KISSLINGER and JONES 1991;

TSAPANOS 1990; FELZER et al. 2002, 2003; CONSOLE

et al. 2003; HELMSTETTER and SORNETTE 2003;

SHCHERBAKOV and TURCOTTE 2004). Perhaps Console

et al. (2003) developed a mathematical model

showing a substantial dependence of Dm on the

magnitude thresholds chosen for the main shocks and

the aftershocks. This partly explains the large

Dm values reported in the past. (3) Omori’s law for

the temporal decay of aftershocks (OMORI 1894), and

the modified Omori’s law (the Omori–Utsu law)

which was proposed by Utsu (1961). We will utilize

the modified Omori’s law in the form proposed by

SHCHERBAKOV et al. (2004)

raðt;mcÞ ¼
1

saðmcÞ
1

½1þ t=cðmcÞ�p
ð3Þ

where ra(t,mc) : dN/dt is the rate of occurrence of

aftershocks with magnitudes greater than or equal to

a lower cutoff mc, t is the time elapsed since the time

of the main shock. In the limit t ? 0 we have

ra = sa
-1, the characteristic time sa(mc) is the reci-

procal of the initial (constant) rate of aftershock

activity at early times. The characteristic time c(mc)

is the time of transition from their rate to the power-

law decay of aftershock activity.
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There are two limiting cases for the behavior of

Omori’s law. In the first it is assumed that c0 is a

constant and that sa(mc) depends on the cutoff mag-

nitude mc. In the second it is assumed that s0 is a

constant and that c(mc) depends on the cutoff mag-

nitude mc. NANJO et al. (2007) has discussed these

limits in some detail with applications to four Japa-

nese earthquakes. In this paper we will assume c0 to

be constant and sa(mc) is determined from the data. In

this limit the modified form of Omori’s law given in

Eq. (3) becomes

raðt;mcÞ ¼
1

saðmcÞ
1

½1þ t=c0�p
ð4Þ

For all values of time t the values of the after-

shock rate ra(t, mc) for different mc are related by

raðt;mc1Þ
raðt;mc2Þ

¼ saðmc2Þ
saðmc1Þ

ð5Þ

However, the rates of aftershock occurrence for

different values of mc satisfy the GR law. From

Eq. (1) we obtain

raðt;mc1Þ
raðt;mc2Þ

¼ 10�bðmc1�mc2Þ ð6Þ

Combining Eqs. (5) and (6) we find

saðmc2Þ
saðmc1Þ

¼ 10�bðmc1�mc2Þ ð7Þ

We will obtain a b-value from GR scaling and

will then fit aftershock statistics for several values of

mc to obtain preferred values of c0, p, and the sa(mc).

We illustrate it in the Sect. 2.

In this study, we analyze the scaling laws for the

aftershock sequence from the m = 7.65 20 Septem-

ber 1999 Chi–Chi, Taiwan earthquake. The

aftershocks are in good agreement with the Guten-

berg–Richter law for frequency–magnitude scaling

and the aftershock decay rates satisfy the modified

Omori’s law. An interesting result in this paper is that

we find that the Chi–Chi earthquake triggered an

anomalously large number of aftershocks. We also

consider the statistics of interoccurrence times for

Chi–Chi aftershocks. The observed statistics of

interoccurrence times for the Chi–Chi earthquake

sequence has a power-law dependence on the times

between successive aftershocks over several orders of

magnitude. The distribution of interoccurrence time

is well approximated by a nonhomogeneous Poisson

(NHP) process driven by the modified Omori’s law

over a finite time interval T (SHCHERBAKOV et al. 2005,

2006). At the end of this paper, we introduce the

concept of Omori times to analyze the interoccur-

rence times for the Chi–Chi aftershock sequence. We

calculate the mean interoccurrence interval over a

fixed number of aftershocks N = 25, 50, 100, 200,

and compare the Chi–Chi aftershocks with a combi-

nation of Omori decay and a steady-state background.

2. Scaling of Chi–Chi Aftershock Sequences

The Chi–Chi earthquake struck central Taiwan on

20 September 1999 at 17:47UTC. It ruptured along

the Chelungpu fault, and the moment magnitude, mw,

was 7.65. The hypocenter of the Chi–Chi earthquake

was located at 23.853�N, 120.816�E, at a depth of

8 km. In this paper we study the aftershock sequence

of this earthquake. We combine three catalogs from

1994 to 2008 for our analyses. These three catalogs

include: (1) the Central Weather Bureau seismic

network (CWBSN) catalog from the Central Weather

Bureau (CWB) of Taiwan, (2) the Taiwan Strong

Motion Instrumentation Program (TSMIP) (CHANG

et al. 2007) which provides good coverage for early

aftershocks, and (3) the Centroid-Moment-Tensor

(CMT) catalog for large aftershocks. We use the

TSMIP catalog for the first hour of Chi–Chi after-

shocks and the CMT catalog for aftershocks m [ 5.

The completeness magnitude for the area analyzed is

m C 2.0. We combine these catalogs and then define

the Chi–Chi aftershock region.

In Fig. 1 we define the spatial window for the

Chi–Chi aftershocks. We compare the spatial distri-

bution of seismic activity in Taiwan for 1,000 days

after the Chi–Chi earthquake with the activity for

1,000 days before the Chi–Chi earthquake. We

choose the area with the largest change in seismic

activity as the Chi–Chi aftershock region. Our pur-

pose is to exclude the region of high seismicity to the

east. The epicenter of the mainshock is shown as a

black star. The dashed lines show the region of

seismic activity we associate with the Chi–Chi

aftershocks. During the 1,000 day time interval after
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the Chi–Chi earthquake, 42,952 aftershocks were

recorded with magnitudes m C 2.0, and nine of the

aftershocks had magnitudes m C 6.0. A comparison

of Fig. 1a with b indicates that less than 5% of the

earthquakes in our region were not aftershocks and

less than 5% of the aftershocks occurred outside the

chosen region. Since the majority of aftershocks have

been included we therefore expect the minor differ-

ence in the spatial extent does not affect the following

analysis.

First, we consider the frequency–magnitude scal-

ing for the Chi–Chi aftershock sequence. The

frequency–magnitude distribution of the seismicity in

the Chi–Chi aftershock area (Fig. 1b) for 1,000 days

after the earthquake is given as a function of m in

Fig. 2. The role over for small amplitudes m \ 2 is

attributed to lack of sensitivity of the networks for

small aftershocks. The behavior for large amplitudes

m [ 5 is attributed to relatively few aftershocks. We

obtain the least square fit of the GR scaling relation

Eq. (1) in the magnitude range 2 \ m \ 5 and find

that b = 0.84, and a = 6.4 (the straight dashed line

in Fig. 2).

We next consider the application of Båth’s law,

Eq. (2), to the Chi–Chi earthquake. The magnitude of

the mainshock was mw = 7.65 and the magnitude of the

largest aftershock was mw = 6.70 so that Dm = 0.95.

SHCHERBAKOV and TURCOTTE (2004) proposed a modified

version of Båth’s law which is based on an extrapolation

of Gutenberg–Richter statistics for aftershocks. The

inferred magnitude of the largest aftershock m� is

Figure 1
The spatial distribution of seismicity activity for 1,000 days before the 20 September 1999 Chi–Chi earthquake in (a), and 1,000 days after the

Chi–Chi earthquake in (b). The magnitude of these earthquakes are great than 2.0. The epicenter of the Chi–Chi earthquake is shown as a

black star. The black line shows the surface rupture of the Chi–Chi earthquake. The dash line shows the region of the aftershocks for the

statistic of Chi–Chi aftershocks. EP Eurasian Plate, and PSP Philippine Sea Plate
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Figure 2
The cumulative frequency–magnitude distribution of Chi–Chi

aftershocks for 1,000 days after the main shock. The dash line is

the best fitting for data with the b = 0.84 by Gutenberg-Richter

relation
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deduced by taking Log10N(Cm�) = 1 for a given

aftershock sequence. From Eq. (1) we find

a ¼ bm� ð8Þ

The difference in magnitude between the main-

shock and inferred largest aftershock Dm�is given by

Dm� ¼ mms � m� ð9Þ

Substitution of Eqs. (8) and (9) into Eq. (1) gives

Log10N �mð Þ ¼ b m� � mð Þ ¼ b mms � Dm� � mð Þ
ð10Þ

In Fig. 2, from the fit of the Gutenberg–Richter

relation Eq. (1), we find from Eq. (8) that m� =

a/b = 7.62 and Dm� = 0.03. For the Chi–Chi earth-

quake the magnitude of the largest actual aftershock,

mw = 6.70, is much smaller than the largest inferred

aftershock, m� = 7.62. For ten large earthquakes in

California, SHCHERBAKOV and TURCOTTE (2004) found

on average Dm� = 1.11. If this value had been valid for

the Chi–Chi earthquake, the main shock magnitude

would have been mms = 8.73. Clearly, the Chi–Chi

earthquake had a large number of small aftershocks.

NANJO et al. (2007) carried out a detailed study of

aftershock statistics for four moderate sized Japanese

earthquakes. The relevant data were obtained from

the seismic catalog maintained by the Japan Meteo-

rological Agency. For the m = 7.3 1995 Kobe

earthquake m� = 6.27 and Dm� = 1.03, for the

m = 7.3 2000 Tottori earthquake m� = 6.14 and

Dm� = 1.16, for the m = 6.8 2004 Niigato earth-

quake m� = 7.15 and Dm� = -0.35, and for the

m = 7.0 2005 Fukuoka earthquake m� = 6.27 and

Dm� = 0.73. Thus, the Niigato earthquake had a

large excess of aftershocks similar to the Chi–Chi

earthquake.

We next consider the decay rate of aftershock

activity following the Chi–Chi earthquake. Figure 3

shows the rates of occurrence of aftershocks with

magnitudes greater than mc in numbers per day for a

time period of 1,000 days after the Chi–Chi earth-

quake. Different symbols corresponds to different

lower magnitude cutoffs, mc, which are taken to be

mc = 2.0, 3.0, and 4.0. To quantify the observed

aftershock occurrence scaling, we use the generalized

Omori’s law given in Eq. (3). As previously dis-

cussed we will assume that c0 is constant and sa(mc)

is a function of mc so that we will use the form of

Omori’s law given in Eq. (4) to fit the data in Fig. 3.

Taking b = 0.84 from Fig. 2, we find from Eq. (7)

that

saðmc ¼ 4Þ
saðmc ¼ 3Þ ¼

saðmc ¼ 3Þ
saðmc ¼ 2Þ ¼ 10b ¼ 6:92 ð11Þ

The dashed lines in Fig. 3 have been obtained

from the least square best fit of Eq. (4) with condi-

tions given by Eq. (11). We find that p = 1.05 and

c0 = 6910-3 days. sa(mc = 2) = 6.71 9 10-7 days,

sa(mc = 3) = 4.70 9 10-6 days, and sa(mc = 4) =

3.30 9 10-5 days. For large times there is generally

good agreement. The deviations at small times for the

mc = 2 and mc = 3 data are can be attributed to a

failure to record early weak aftershocks.

SHCHERBAKOV et al. (2006) studied the interoc-

currence time statistics for Parkfield aftershock

sequences. The distribution of interoccurrence times

is well approximated by a nonhomogeneous Poisson

(NHP) process driven by the modified Omori’s law

over a finite time interval T (SHCHERBAKOV et al.

2005). In this study we also analyze the temporal
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Figure 3
The rates of occurrence aftershock with magnitude grater than mc

in number per day for a time period of 1,000 days after Chi–Chi

earthquake. Difference symbol corresponds to a different lower

magnitude cutoffs mc, which were taken to be mc = 2.0, 3.0, and

4.0. The dash line is the best fitting of the generalized Omori’s law

with p = 1.05 and c0 = 6 9 10-3. The value of characteristic

times sa(mc) for mc = 2.0, mc = 3.0, and mc = 4.0 are

sa = 6.71 9 10-7 days, 4.70 9 10-6 days, and 3.30 9 10-5 days

224 Y.- T. Lee et al. Pure Appl. Geophys.



correlation properties of the Chi–Chi aftershock

sequence. We treat all aftershocks with magnitudes

equal to or greater than mc as a point process

(SHCHERBAKOV et al. 2006). The interoccurrence times

between successive aftershocks are defined as

Dti = ti - ti-1, i = 1, 2…. In Fig. 4 we give the

probability distribution function of the interoccurrence

times between aftershocks, P(Dt, mc), each symbol

corresponds to a different magnitude cutoff, mc = 2.0,

3.0 and 4.0. We consider the time interval following the

main shock of T = 1,000 days. We apply the data bin-

ning technique proposed by CHRISTENSEN and MOLONEY

(2005) which is using the log span for the P(Dt, mc) to

reduce the noise effect of long interoccurrence times.

The observed statistics of interoccurrence times for the

Chi–Chi aftershock sequence has a power-law depen-

dence on the times between successive aftershocks for

different magnitude cutoffs.

The distribution of interoccurrence times can be

approximated by a distribution derived from the

assumption that aftershocks follow the NHP process

(SHCHERBAKOV et al. 2005). The probability distribu-

tion function of interoccurrence times at time t, until

the next event in accordance with the NHP hypothesis

has the following form:

Fðt;DtÞ ¼ 1� e
�
RtþDt

t

rðuÞdu

ð12Þ

where r(u) is the rate of occurrence of aftershocks at

time t. The probability density function of interoc-

currence times over a finite time interval T is given by

PTðDtÞ

¼ 1

N

ZT�Dt

0

rðsÞrðsþDtÞe
�
RsþDt

0

rðuÞdu

dsþrðDtÞe
�
RDt

0

rðuÞdu

2

6
4

3

7
5

ð13Þ

where N is the total number of events during a time

period T. In order to evaluate the rate r(t) we take the

values from Eq. (4) that have been given as the dashed

lines in Fig. 3. Substituting the values for mc = 2, 3, and

4 in Eq. (13) and integrating gives the dashed lines

plotted in Fig. 4. In Figs. 3 and 4 we compare our the-

oretical derivations of aftershock rates and distributions

of interoccurrence times from Chi–Chi aftershocks, we

see excellent agreement with mc = 4.0. This is evidence

that the catalogue is nearly complete for m C 4.0 with

few missing early aftershocks. But for the smaller

aftershocks with m \ 4.0, it is clear that significant

numbers early in the aftershock sequence are lost.

We next introduce the concept of Omori times for

the Chi–Chi region (Fig. 1) from 1994 to 2008. The

Omori time sN is defined as the mean interoccurrence

interval over a fixed number N of earthquakes

sNðtnÞ ¼
1

N

Xn�1

m¼n�N

ðtmþ1 � tmÞ ð14Þ

We assign the values of s to the end tn of the

subsequence of N events. The Omori time is the

reciprocal of the average of the rate of aftershock

activity r for N aftershocks. In Fig. 5 we give the

Omori times for the 1999 Chi–Chi Taiwan earth-

quake considered above. The earthquake magnitudes

are greater than mc = 2.0. The Omori times sN are

given for N = 25, 50, 100, and 200. For the 6 years

before the Chi–Chi earthquake, the data are reason-

able well represented by the mean Omori time sb =

0.1753 days (the grey dashed lines in Fig. 5), corre-

sponding to a background rate rb = 5.7045 day-1.

During the aftershock sequence, the modified form of

Omori’s law is given by Eq. (4). We consider the

100 102 104 106
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Figure 4
The probability distribution function of the interoccurrence times

between aftershocks, P(Dt, mc). Each symbol corresponds to a

different magnitude cutoff mc, mc = 2.0, 3.0 and 4.0. A time

interval following the mainshock T = 1,000 days in considered.

The resulting theoretical distribution from the nonhomogeneous

Poisson (NHP) process is shown by dashed curves
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Omori time behavior during the 9 years after the

Chi–Chi earthquake, and assume that the rate of

occurrence r is the sum of the rate of background

seismicity, rb, and the rate of aftershock seismicity ra

(KISSLINGER 1996). With ra given by Eq. (4) we obtain

r ¼ rb þ ra ¼ rb þ
1

sað1þ t=c0Þp
ð15Þ

The Omori times are given by

s ¼ 1

r
¼ sb þ sað1þ t=c0Þp

sbsað1þ t=c0Þp
� ��1

ð16Þ

The Omori times for the Chi–Chi region (Fig. 5)

are in good agreement with Eq. (16) taking

sb = 0.1753 days, p = 1.05, c0 = 6910-3 days, and

sa(mc = 2.0) = 6.71 9 10-7 days (s is the red

dashed lines in Fig. 5). These parameters are from the

Omori’s law correlation given in Fig. 3.

3. Discussion and Conclusions

Seismicity is a complex system, and within this

complexity there are several scaling laws. The GR

scaling is equivalent to fractal scaling between the

number of earthquakes and their rupture area, and this

scaling may be the consequence of a fractal distri-

bution of fault sizes. Presumably aftershocks satisfy
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Figure 5
The Omori times for the Chi–Chi region (Fig. 1) from 1994 to 2008. The earthquake magnitudes are greater than 2.0. The Omori times sN are

given for N = 25, 50, 100, and 200. The gray dashed lines are the mean Omori times before the Chi–Chi earthquake. The red dashed lines are

the theoretical Omori times for Chi–Chi aftershocks from Eq. (12) with s0 = 0.1753 days, p = 1.05, c = 6910-3 days, and

s(mc = 2.0) = 6.71 9 10-7 days. The magnitude of these earthquakes are also given
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GR scaling for the same reason that all earthquake do.

However, there is no accepted theory for the expla-

nation of the scale-invariant nature of this

distribution. Generally, two models have been pro-

posed: (1) each fault has a GR distribution of

earthquake magnitudes and (2) there is a power-law

frequency-area distribution of faults and each fault

has recurring characteristic earthquakes (TURCOTTE

et al. 2007).

SHCHERBAKOV et al. (2006) analyzed the scaling

laws for the aftershock sequence from the 2004

Parkfield earthquake, and the aftershocks satisfy the

GR relation with b = 0.88 and a = 4.4. They also

considered Båth’s law for Parkfield earthquake. The

magnitude of the Parkfield earthquake was mms = 6.0

and the magnitude of the largest aftershock was

mmaxas = 5.0 so that Dm = 1.0 which is close to the

value of Dm = 0.95 for the Chi–Chi earthquake. The

magnitude of the largest inferred Parkfield aftershock

was also m� = 5.0 so that Dm� = 1.0, but for the

Chi–Chi earthquake Dm� = 0.03. As can be seen

from Fig. 2, the Chi–Chi earthquake had large num-

bers of small aftershocks consistent with GR scaling

but relatively few large aftershocks. As pointed out

earlier, this behavior is similar to the aftershock

sequence of the m = 6.8 2004 Niigata earthquake.

Most earthquakes have values of Dm� in the range

0.8–1.5 but a few, such as the Chi–Chi earthquake,

have small values of Dm�. These earthquakes have

many more small aftershocks than normal. After-

shocks are generally attributed to the transfer of stress

during the main shock rupture. The excess of small

aftershocks can be attributed to a larger component of

stress transfer. Our possible explanation is a slow

(silent) component of rupture associated with the

main shock.

Omori’s law also appears to be universally

applicable to aftershock sequences. Some regions

experience an increase in stress during a main shock,

and aftershocks relieve the excess stress in these

regions. Many studies try to explain the systematic

time delay before the occurrence of aftershocks. DAS

and SCHOLZ (1981), MAIN (2000), and OJALA et al.

(2003) attributed this decay to stress corrosion com-

bined with a critical stress intensity factor. SHAW

(1993) has used a phenomenological approach to the

dynamic of subcritical crack growth. For aftershock

decay, RUNDLE (1989), RUNDLE and KLEIN (1993), and

RUNDLE et al. (1999) have proposed the spinodal line

for critical point nucleation to relate aftershock

sequences to the power–law scaling.

The temporal evolution of the rate of occurrence

of aftershocks is quantified using Omori’s law

Eq. (3). This paper also introduces another quantity,

Omori times, to quantify the temporal evolution of

interoccurrence times. In Fig. 5 we give the Omori

times for the period from 1994 to 2008 for the Chi–

Chi earthquake. It includes the Chi–Chi aftershocks

with a combination of Omori decay and a steady-state

background. The result shows that during the period

1999 after the Chi–Chi earthquake to 2008, the rate of

seismicity decayed systematically with the exception

of a burst of seismicity in 1999. The distribution of

Omori times during the period 2000–2008 is in good

agreement with the theoretical relation given in

Eq. (16) (the red dashed lines in Fig. 5). During the

period 1994 to 1999, the rate of seismicity was rel-

atively stable. In this paper we also argue that the

aftershocks of Chi–Chi earthquake still continue

today.
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