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Abstract: The Biluo Co and Amdo 114 station, northern Tibet, cropping out the Early Toarcian and
Middle-Late Tithonian (Jurassic) organic-rich black shales, have been a focus to petroleum geologists
in discussing their oil-producing potential. This paper first reports the trace elements and rare earth
elements to discuss the paleoenvironments, redox conditions and sedimentary mechanisms of those
black shales. Both sections exhibit variation in trace element abundances with concentrations <0.1
ppm to 760 ppm, mostly enriched in V, Cr, Ni, Cu, Zn, Mo, Ba and U. Element ratios of Ni/Co, V/Cr,
U/Th and V/(V+Ni) plus U were used to identify redox conditions. The shale-normalized rare earth
element (REE) patterns are characterized by the flat-shale type with instable Ce anomalies and very
weekly positive Eu anomalies. Positive Ce,,,, values are significant with values varying between —
0.064 and 0.029 in Biluo Co, which may be interpreted as release of REE and input of riverine
terrestrial matter with rich Ce (resulting in pH change) during the anoxic conditions. In the middle
parts of Amdo 114 station, distinct negative Ce,,,n, values are observed (—0.238 to —0.111) and
associated surface water warming were interpreted as being related to a major sea level rise. In
contrast, the formation of the black shales in the lower and upper part of the studied succession took
place during a cooler (Ce,,,m values >—0.10), lower surface water productivity, and lower sea-level
stage. Thus, we emphasize the role of different factors that control the formation of local and regional
black shales. The most important factors are sea-level fluctuations and increasing productivity.
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1 Introduction

Black shales and/or black shales facies, visually
identified by their color, were thinly carbonaceous shale,
exceptionally rich in organic matter (5% or more carbon
content) and sulfide (especially iron sulfide, usually
pyrite), commonly contained unusual concentrations of
certain trace elements (U, V, Cu, Ni) (Neuendorf et al.,
2005), considered to record anoxic sedimentary
environments (Vine and Tourtelot, 1970). Black sediments
are deposited under a wide diversity of conditions:
freshwater to estuarine to marine, incorporating varying
organic productivity and sedimentary pH values. Because
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of the presence of common microcrystalline sulfide
compounds (FeS (black) or FeS, (green)) and black
minerals (Mn), the black color is not always an indicator
of reduction conditions. Accordingly, the geochemical
characteristics of black shales may record variations in
environmental conditions of deposition. The bulk
chemical composition of black shales reflects: (1) their
initial (pre-erosional) source rocks; (2) the chemistry of
the depositional environment; and (3) post-lithofaction
processes (Quinby-Hunt and Wilde, 1994).

Jurassic or Cretaceous black shales in Europe, linked
with the oceanic Anoxic Events (OAEs) (Jenkyns, 1988),
were taken to reflect the effects of global, synchronous
deposition without synchroneity being demonstrated. But
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the mechanisms to produce widespread anoxia are still
under debate (Leckie et al. 2002; Meyers and Negri, 2003;
Negri et al., 2006; Hofmann et al., 2008; Tiraboschi et al.,
2009; Mazzini et a., 2010; Jenkyns, 2010). Thus,
lithologically described black shales can be deposited
under a variety of environmental conditions, which must
be identified through means rather than simple color or
paleontology or the preservation of organic matter or even
isotopes (613C, 6"%0, "N, (598M0). However, the rare
earth, trace elements are also important to determine in
differing environmental conditions such as functions of
redox conditions, plate-tectonic depositional setting,
organic productivity, which can be discerned in black
shales from the concentration of major mobile elements
(Brumsack, 2006; Piper and Calvert, 2009; Baioumy and
Ismael, 2010; Zanin et al., 2010; Zhou et al., 2011).

The rare earth element (REE) characteristics including
distribution, cerium and europium anomalies have been
used to be potential indicators of depositional
environments, for example, paleosalinity and water depth,
pH and Eh of water mass, redox conditions, eustatic sea-
level changes, and so on (Mazumdar et al., 1999; Guo et
al., 2007; Zanin et al., 2010). Variations in the REE
content in different lithologic types have been either
attributed to varying depositional conditions, and the REE
concentration patterns are primarily determined by the
disintegration of the labile Fe-Mn-oxyhydroxide phase,
originally precipitated from the water column (Wright et
al., 1987). It is important to note that the presence in black
shales of negative Ce anomalies typical of seawater may
be a reliable redox indicator of the primary water body
(Mazumdar et al., 1999).

To obtain insight into the formation of local and
regional black shales and paleoenvironmental changes, we
studied two black shale couplets the Biluo Co and Amdo
114 station of the Jurassic sections in Qiangtang Basin
(northern Tibet, China). These black shales are both
classic examples of oil-prone source rocks and have been
a focus of scientific interest. Fu et al. (2008, 2010)
discussed the REE characteristics, Re-Os dating, and
sedimentary environments of marine oil shales in Shengli
River-Changshe Mountain area, northern Tibet, but the
above-mentioned black shales of Biluo Co and Amdo 114
station have been little mentioned in
geochemistry to paleoceanographic
implications. In recent years, some results have shown the
Biluo Co shales deposited under reducing and anoxic
conditions (Chen et al., 2005; Yin et al., 2006), but there
has been continuing debate over whether
conditions were persistent or seasonal, and whether the
eustatic sea-level changes in shales of the anoxic facies
can be supported by the trace elements, cerium anomaly,

elemental
understand  the

anoxic

or the REE in marine black shales may reflect the redox
conditions of ambient seawater.

In this paper, we attempted to explain the variable
elemental anomalies, sea-level changes as well as the
paleoceanographic implications in the black shales of
Lower Toarcian and Middle-Upper Tithonian in
Qiangtang Basin. The geochemical evolution in the
organic-rich matter phases of two successions were also
compared to discuss mechanisms responsible for the most
organic carbon-rich black shales and caused oceanic
anoxic events.

2 Geological Setting

2.1 Geological setting

Qiangtang Basin lies in between the Jinshajiang and
Banggong-Nujiang suture zones (JSS and BNS) in the
northern Qinghai-Tibet Plateau (Fig. 1a). Structurally, the
basin is characterized by one uplift and two depressions
from north to south: northern Qiangtang depression,
central uplift, and southern Qiangtang depression,
respectively (Fig. 1b). During the Late Triassic, the
Indosinian orogeny caused the complex activities of the
Xijinwulan-Jinshajiang fold and the opening of the Meso-
Tethyan sea within the BNS (Li et al., 1996). After the
opening of Meso-Tethys, the Qiangtang terrane moved
and subducted northward. Two marine basins (the
northern Qiangtang Basin and southern Qiangtang Basin,
respectively) began to separate and developed. The
southern Qiangtang Basin is characterized by a slope
environment of a passive continental margin, while the
northern Qiangtang Basin equates to a peripheral foreland
basin environment. During the Jurassic, because of the
new Tethyan sea opening in the Yarlung Zangbu zone, the
Gondese-Tanggula terrane moved northward and the
Banggong-Nujiang was gradually closed, which resulted
in subcrustal lithosphere subduction toward the Qiangtang
terrane as a result of island arc formation in the central
uplift 2000).
Qiangtang Basin gradually evolved into back-arc foreland
land, while the southern Qiangtang area became a fore-arc
basin.

(Huang, Subsequently, the northern

Different subsidence rates originated in various sections
of the Qiangtang Basin and, also due to variable
sedimentation  rate, paleoenvironmental
differentiations occurred. The physiography of the sea

marked

bottom was developed into relative structural highs and
slopes.
Consequently, the Jurassic sedimentary sequences show a

troughs, connected by variously inclined

sharp variation in thickness and lithologies.
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2.2 Litho- and biostratigraphy

The Bilong Co section crops out on the margin
of the central uplift. The whole succession has
been described in detail previously by Chen et al.
(2005) with oil shales, shales, marls, and
mudstones (Fig. 2a). Abundant ammonites at the
top of the section include a specimen identified as
an Early Toarcian Harpoceras sp., which was
related to the global oceanic anoxic event during
the peak of transgression in the Early Jurassic
(Chen et al., 2005).

The Amdo 114 station section is located near
the Qinghai-Tibet highway. The section provides
good exposure with abundant ammonites and
bivalves of Late Jurassic age (Chen et al., 2000).
The lower part of this section is composed of
sandstone, sandy gravel and siltstone, whereas the
middle part is limestone, bioclastic and silty
limestone. The upper part of the section is
characterized by grey-green siltstone, calcareous
fine-grained sandstone, dark grey, medium-thick
bedded microcrystalline limestone, medium-thin
bedded marl and bioclastic interbeds, partly as
argillaceous and/or silty limestone (Fig. 2b).
Fossils include bivalves Buchia, Chlamys,
Posidonia plus some significant ammonites,
which are typical of Middle-Late Tithonian (Late
Jurassic).
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Fig. 1. Tectonic sketch map of the Qinghai-Tibet plateau (a) showing that
the Qiangtang Basin is located between the Jingshajiang Suture and Bang-
gong-Nuyjiang Suture. (b) Map showing the Qiangtang Basin tectonic units

3 Sampling and Analytical Methods

Thirty-one organic-rich rock samples, 10 from the Biluo
Co section and 21 from the Amdo 114 station section,
were collected from outcrops in Qiangtang Basin, northern
Tibet. These samples are mainly oil shales, shales,
mudstones and marls with high organic carbon (Fig. 2).
Whole-rock samples were trimmed to remove altered
surfaces, and then cleaned with deionized water. All
samples were crushed to 200 mesh for analysis of REE
and trace element contents. Powdered samples were
digested in a capped Teflon beaker with 1 mL ultrapure
HF and 0.5 mL ultrapure HNO; at 200°C for 24 h until
totally dissolved. After digestion of the powder, the vial
was opened to air and heated to 130°C for 3 h until the
sample was fully dried. The dried sample was finally
diluted in 2 mL ultrapure HNO; and 5 mL ultrapure water.
Dilute sample solutions were analyzed by a Perkin-Elmer
Sciex ELAN 6000 inductively coupled plasma mass
spectrometer (ICP-MS) at the State Key Laboratory of Ore
Deposit Geochemistry, Institute of Geochemistry, Chinese
Academy of Sciences (IGCAS), following procedures
described by Qi et al. (2000). Analytical uncertainties are

and the studied areas: Biluo Co and Amdo 114 station.

better than 5% for all elements based on the
reproducibility of standards during the run analyses of
international standards OU-6 and AHM-1 are in agreement
with recommended values (Table 1 and Table 2).

Rare earth element data were normalized to the Post-
Archean Australian Shale (PAAS) Standard (McLennan,
1989) to remove the odd-even effect of elemental
abundances. Normalized REE abundances were then
plotted on a logarithmic scale vs. atomic number on a
linear scale.

4 Results

4.1 Trace elements

Trace elements distributions in representative samples
from Biluo Co and Amdo 114 station black shales are
shown in Table 1. Both sections exhibit variation in trace
element abundances with concentrations <0.1 ppm to 760
ppm, except BPO18bl records 3004.579 ppm of Sr,
however, the Ag, In, Hf, Ta, W, Ti and Bi are lower than
<1 ppm. Their concentrations are lower than average
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Fig. 2. The Lithostratigraphy of the Lower Toarcian in
Biluo Co section (a) and the Middle-Upper Tithonian in
Amdo 114 station section (b)

contents in black shales (Wedepohl, 1971, 1991). In the
Biluo Co section, the concentrations of transition and
chalcophile elements such as V, Cr, Ni, Cu, Zn, Mo, Ba
and U in the lower part are extremely low compared with
those of oil shales or marls. These elements are also
strongly enriched in the oil shales of the middle part from
BP020B2 to BP022B2, whereas the highest content
occurred in the upper part. Similar enrichments of Sr and
Ba are found in the carbonates of Biluo Co and Amdo 114
station. As shown in Table 1, the lower parts demonstrate
the highest values of the V, Cr, Ni, Cu, Zn, Mo, Ba and U,
with the lowest values of Sr in the whole profile.
Furthermore, their concentrations exhibit obvious changes
from lower to higher, and finally to lower.

4.2 Rare earth elements

The data on the REE contents in the black shales of the
different locations and ages (Toarcian and Tithonian) are
shown in the Table 2. The contents of REE in the black
shales vary within close limits of 14.016-60.563 ppm,
except HO6b1 for 9.883 ppm and HO7b1 for 3.741 ppm,
and the average REE content in the main types of black
shales is close to 30-50 ppm. The ¥ REE values are lower
than the average values reported from Jurassic black
shales (Zanin et al., 2010; Baioumy and Ismael, 2010),
also well below the world-average of black shales
(131.45 ppm) (Yudovich and Ketris, 1994). The lithologic
variation of the Biluo Co and Amdo 114 station displays
not only in the total REE content, but also in ratios of
LREE (La, Ce, Pr, Nd, Sm) to HREE (Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb and Lu). In addition, the ¥ LREE/~HREE
rations vary from 6.6 to 9.6, which show the light REE
(LREE) enrichments and heavy REE (HREE) depletion.
The shale-normalized (McLennan, 1989) REE patterns are
characterized by the flat-shale type with instable Ce
anomalies and very weekly positive Eu anomalies (Fig. 3).
Positive Ceynom values are significant with values ranging
between —0.064 and 0.029 in Biluo Co, whereas for the
marls/limstones of Amdo 114 station the distinct negative
Ceznom Vvalues of —0.238 to —0.111 are observed. Eu
anomalies fluctuate from 0.987 to 1.212 in Biluo Co and
from 0.978 to 1.133 in Amdo 114 station with a mean
value of 1.067, therefore, EwEu" exhibits no distinctive
difference between two successions.

5 Discussion

5.1 Effect of depositional environment on trace
elements

Organic-rich black shales have long been regarded as an
indicator for anoxic depositional environment. Some
major results have been precisely analyzed for those trace
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548 Jurassic Black Shales Facies from Qiangtang Basin (Northern Tibet) Chen et al.

elements accumulated in marine sediments (ancient

or modern basins) or sedimentary rocks, with a 10
diagnostic of deposition under oxic (Mn and Fe),

suboxic (Cr, Re, U, and V), and fully anoxic 1
bottom-water conditions (Mo, Cd, Cu, Zn) (Piper
and Calvert, 2009). So, the concentrations and
ratios of the redox-sensitive trace metals such as
Mo, V, Ni, Cr, U, and Mn may yield powerful
information linked to local or global variability of
paleoredox environments (Brumsack, 2006; Guo e
al., 2007; Piper and Calvert, 2009; Baioumy and
Ismeal, 2010). Of course, the strong enrichments in
Cd, Mo, V, Cu, Ni, (Bi), and Sb demonstrate that
bio-accumulation and presence of H,S in the water
column and associated with sulfidation processes
(Brumsack, 2006). Element ratios of Ni/Co, V/Cr, | A HBb A H2A4 - % - H4

(a) Biluo Co

—4— BP011B1 —«—BP016H —%— BP(017B1 —e—BP018bl —+—DBP020B2
—=— BP020B3 —0— BP020B4 —¢— BP022B2 —&—BP024S —A— BP024S1
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0.01
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0.001

(b) Amdo 114 station

| —A— HOG6bl—>— H07b] —*— HO8b —@— H09B —+— HI10B HI1H
—6— HI2® —— HI3' —W—HI4¥ —A—HI5' --x- -HI6b] - - X% -HI7b
--©-- HI8' ---4-- HI§ ---m-- g1g* ---A-- H20' ---# - H20' - - -F - H2I’

U/Th and V/(V+Ni) plus U have been used to
identify anoxic water-column conditions during
black shale depositions (Jones and Manning, 1994;
Rimmer, 2004).

The bulk Ni:Co ratios change between 3.7 and
6.3 with average values of 5.1 in Biluo cuo,
whereas between 2.2 and 11.56 with average
values of 6.38 in Amdo 114 station (Table 1), o0.001
which suggests the Ni/Co average rations are
higher than 4.0. According to the V/Cr values, we
can see the ratios are very low in both sections,
varying from 1 to 2.0 in Biluo Co and from 0.3 to
1.7 in Amdo 114 station. The uptake of V by algae is
discernible, albeit weakly, by its slight depletion in the
photic zone. As for Cr, it precipitates as Cr(OH);, or is
adsorbed onto settling particles, under mildly denitrifying
to anoxic conditions, i.e., throughout the O, depleted
region of the water column. Under oxic conditions, Cr is
in the oxidized and more soluble CrO,> valence state
(Murray et al., 1983). Higher Ni/Co and V/Cr ratios relate
to increasingly deficient oxygen levels during deposition
(Jones and Manning, 1994), due to the relative easiness at
which Ni and V is sequestered by organic matter in
reducing sediments (Breit and Vanty, 1991). In addition,
Cr and Co concentrations are thought to be a function of
detrital content, and not influenced by redox conditions
(Ross and Bustin, 2009).

The U and Th exhibit geochemical
characteristics, except under oxidizing conditions (Rogers
and Adams, 1976; Wedepohl et al., 1978; Wang et al.,
2011). Arthur and Sageman (1994) suggested the U/Th
ratio in marine black shales is sensitive to the relative
inputs of Th-bearing clay minerals and U is fixed in
sediments during early diagenesis in anoxic environments.
The U/Th ratio can be used as a redox indicator with high
values (>1.25) associated with anoxic environment and

Sample/PAAS

similar

La Ce Pr Nd

Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 3. Shale-normalized rare earth element (REE) distribution of black
shales in Biluo Co (a) and Amdo 114 station (b).

low values (<0.75) associated with oxic environment
(Jones and Manning, 1994). As shown in Table 1, the
black shales from the Amdo 114 station section display
higher U/Th ratios (0.3-2.8) and U values (1.00-1.94)
than those from the Biluo Co section (0.30-0.83 and 0.90-
1.55 for U/Th and dU, respectively), which may indicate a
more anoxic environment in Amdo 114 station area than
Biluo Co area.

The V/(V+Ni) ratio, or variation of the ratio, in bulk
sediment has also been used to identify anoxic conditions
in the geologic record. Enrichments of both metals were
ascribed by Lewan and Maynard (1982) to the metallation
of porphyrins, which are enriched in fine-grained shallow-
water sediments with anoxic sediment in pore waters, but
not necessarily deposited from anoxic bottom waters.
Thus, variations in the V/(V+Ni) ratio could indicate
relative changes in oxygenation with higher ratios
signaling more strongly anoxic conditions of deposition.
All black shales have similar values of V/(V+Ni) ratio
from 0.3 to 0.8 in this study. As for a plot of U/Th vs V/
(V+Ni) for these black shales (Fig. 4a), there is no distinct
difference in two sections.

As mentioned previously, we can discuss the
correlations among trace elements such as Mo, V, and U.
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Fig. 4. The cross-correlation plots of selected trace elements for black shales in Biluo Co and Amdo 114 station.

(a) U/Th vs V/(V+Ni); (b) Mo vs V; (c) Mo vs U.

Fig. 4 shows the two profiles are similar with other anoxic
basin (e.g., Saanich Inlet, Framvaren Fjord, the Cariaco
Basin and the Black Sea), but absolute concentrations vary
slightly. No correlations were observed between Mo vs V
or U in the two sections (Fig.4 b,c). For example, Mo in
the Black Sea possessed the highest concentration of ca.
75 nmol L™" in the very surface water and decreased more
or less uniformly to approximately 5 nmol L™ at 300 m
depth, below which it maintains a uniformly low
concentration (Piper and Calveal, 2009). So, Tribovillart et
al. (2008) have cautioned against the use of Mo
enrichment as a proxy for bottom-water anoxia in ancient
sediments in the absence of enrichments of other redox-
sensitive trace elements such as Re, U, and V. Zheng et al.
(2000) and McManus et al. (2006) further reported Mo
accumulation under less anoxic conditions.

5.2 Rare earth element distributions

Shale-normalized REEs for black shales is shown in
Fig. 3. The patterns exhibit LREE enrichment relative to
HREE in all samples as shown by (La/Yb)y ratio of about
1.3. In Biluo Co, all samples have the similar REE
distributions although the sample BPO18bl is slightly
different. The two samples HO6b1 and HO7b1 of the Amdo
114 station show distinct difference from other samples. It
is noted that not only Trace elements but REE are not in
accordance with the general features in black shales
(Zanin et al., 2010), which may indicate the different
lithofacies and terrigenous source. According to Shengli
River-Changshe Mountain oil shale zone, the X REE
values range from 36.87 to 118.38 ppm, the LREE/HREE
ratios between 6.79 and 10.74 (Fu et al., 2010). All results
suggest a similar depositional environment and epigenetic
evolution of shales, which deposited in the offshore to
continental slope with slow sedimentary rate.

5.3 Cerium anomalies
Fractionation of cerium in seawater is apparently
dependent upon redox potential. Changes in the value of

the anomaly could be related to the redox conditions
predicted by the ventilation model of Wilde (1987) with
more negative values found during warmer climates and
transgressive conditions and more positive values found
during cooler to glacial climates and regressive conditions.
According to Wright et al. (1987), the boundary between
oxic and anoxic conditions is at Ce anomaly value of
—0.10.

Ce anomalies with flat REE distribution and (La/Sm)y
ratios >0.35 could be used as indicative of oceanic anoxia
(Morad and Felitsyn, 2001). All samples with (La/Sm)n
ratios >0.35-1.3 reveal no correlation with Ce anomaly,
which indicates a true Ce anomaly with no infection on the
diagenesis. Pr/Pr’ ratios average 1.035 and 1.084 in the
Biluo Co and Amdo 114 station, respectively, which
indicates that these Ce anomaly differences are subtle
indeed and may have been artificially enhanced by
variable La concentrations (Bau and Dulski, 1996).

Table 2 displays the Ceyon values of the Jurassic black
shales in the studied areas. Black shales in the Biluo Co
are characterized by a positive Ce anomaly (having values
from —0.064 to 0.029), which indicates the bottom water
may be relatively oxic and is not accordant with the other
results such as sedimentological, paleotological, tectonic
and chemical information (Chen et al., 2005; Yin et al,,
2006). This contradiction can be explained as follows:
Under low oxygen conditions, the REE are released with
the input of riverine terrestrial matter with rich cerium
(resulting in pH change). Upon regeneration of this
relatively Ce enriched authigenic phase, the released REE
fraction would produce higher values of Ceyom. This
phenomenon is consistent with the positive Ce anomalies
in the Atlantic ocean, anoxic Cariaco Trench (De Baar et
al., 1985; 1988). The early Toarcian OAE is marked by a
warming climate trend, which was probably related to
increased CO, values (Hesselbo et al., 2000) and that was
coupled to an enhanced hydrological cycle and riverine
input, causing less saline surface waters, stratification and
anoxic bottom water conditions in most NW European
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Fig. 5. Relationship between Eu anomalies and Ba, Sr and Ce anomalies in the Jurassic black shales.

(a) Ba vs Ew/Eu’, (b) Sr vs Ew/Eu’, (c) Ew/Eu" vs Ceunom.

epicontinental basins (Bonis et al., 2009; Mailliot et al.,
2009). This may be occurring in the eastern Tethys, for
example, Tibet. The organic carbon isotopes displayed a
positive excursion of about 2.17%. (PDB) in Biluo Co
(Chen et al., 2005) and the abundant coccoliths occurred
(Chen et al., 2006), which show the black shales of Early
Toarcian are deposited in the transgressive conditions
representing an anoxic environment.

In the Amdo 114 station, the Ce,,,, values gradually
decreased in the middle part. The Ceyom values fell down
to the lowest (—0.238 of H11B), then rose rapidly to about
—0.1. The relatively stable values occurred in the upper
part, but the values changed from —0.075 to —0.173 in the
argillaceous limestones in the top part. As seen above,
three sea-level falls and rises were identified on the base
of the Ce anomalies in Amdo 114 station (Chen et al.,
2012). From lower to upper, the relative eustatic sea-level
changes are in regressive conditions indicating that the
bottom water would become more oxic and the whole-
rock Ce anomaly would be more positive, then in
transgressive conditions indicating that the bottom water
would become more anoxic and the whole-rock Ce
anomaly would be more negative. Thus, we can conclude
that the sea water is deepest in the middle part, which is in
agreement with the appearance of abundant ammonites.
Our results suggest that basinal sediments were not
continuously anoxic and that a final model should
accommodate to the chemical information.

5.3 Europium anomalies

Europium is believed to be the only REE, which may
change its valency in a near surface environment
(Brookins, 1989), whereby Eu’* may be reduced to Eu**
under extremely reducing conditions. The positive
europium anomalies occur all black shales between 0.978
and 1.212 with a mean of 1.087. Previous analytical
studies have shown that care must be taken into the
interpretation of positive europisun anomalies measured

by ICP-MS, due to various barium-compound
interferences (Dulski, 1994). Unfortunately, some recent
studies have drawn incorrect conclusions based on
interference-related Eu  anomalies, for example,
Mazumdar et al. (1999), in which a rough Ba/(Euw/Eu")
correlation was interpreted to be of paleoenvironmental
significance. Among the black shales studied, the weak
correlation between Euw/Eu’ and Ba confirms that no
barium-compound interferences in this study (Fig. 5a). In
addition, higher Ba concentrations varying from 17 ppm to
360 ppm indicate the higher productivity during the
marine sedimentary processes. We also pay more attention
to such correlations as Eu/Eu” and Sr or Ceanom 1n all
samples (Fig. 5b,c). There are no excellent linear
correlations with the positive Eu anomalies, which further
confirms that diagenetic processes or weathering have not
altered the Eu anomalies of all samples in this study.

5.4 A proposed mechanism for Jurassic black shales

What could be the driving force for the local, regional
or global occurrence of black shales during the Early
Toarcian and Middle-Late Tithonian from geochemistry
and calcareous nannofossils? Maybe this question is still
open to debate. Currently available data suggest that the
major forcing function behind OAEs was an abrupt rise in
temperature, induced by rapid influx of CO, into the
atmosphere from volcanogenic and/or methanogenic
sources. Global warming was accompanied by an
accelerated hydrological cycle, increased continental
weathering, enhanced nutrient discharge to oceans and
lakes, intensified upwelling, and an increase in organic
productivity (Hermoso et al., 2009; Tiraboschi et al., 2009;
Jenkyns, 2010; Herrle et al., 2010).

The two sets of Jurassic black shales in the Biluo Co
and Amdo 114 station consist mostly of grey to dark-
colores alternating oil shales, marls, mudstones,
limestones and argillaceous limestones with lamination or
horizontal bedding. Under the polarized light microscope
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and scanning electron microscope (SEM), claystones are
mostly of illite, chlorite, kaolinite and discrete pyrite.
Long-term anoxic conditions are indicated by a general
lack of benthic life but bloom of calcareous nannofossils
(coccoliths), that is to say, the surface water had a
condition featuring high productivity, while the anoxic
bottom water had a condition unfavorable to benthic life.
The Jurassic black shales in the studied areas have
abundant
fossacincta and Watznaueria Britannica (Chen et al,
2006), which have been linked to oxygen depletion, higher
surface water productivity, and enhanced burial of organic
matter. The importance of coccoliths in marine ecosystems
and their widespread occurrence in the fossil record has
led to the extensive use of nannofossil abundance and
species diversity as proxies in paleo-temperature and
nutrient availability in surface water (Herrle, 2003;
Dunkley-Jones and Bown, 2007). In this study, the total
nannofossil abundance and species diversity show lower
values within the calcareous portion, compared to the
argillaceous one and poor to moderate preservation (Chen
et al, 2006). The oxygen isotope and Mg/Ca ratio
recovered from belemnite guards indicate that the T-OAE
is coeval with a 6—7°C warming of seawater (McArthur et
al., 2000; Bailey et al., 2003; Gémez et al., 2008). A
warmer climate caused higher wind speed, which
increased surface water mixing and then increased surface
water productivity. In contrast, a scenario of a cooler
climate and higher surface water productivity is a more
common element of icehouse conditions, where, for
example, upwelling of cold and nutrient rich waters
caused increasing surface water productivity (Herrle et al.,
2010).

A number of redox-sentive trace metals are, with
respect to average shales, concentrated in organic-rich
sediments deposited during OAEs. The two sets of
Jurassic black shales, northern Tibet, are characterized by
higher enrichments in Ba and Mo, Ni, V, Cu, Cr, and U,
reflecting the strong sulfidation in an anoxic water
column. The stratigraphic distribution of some of these
elements shows an initial peak, characteristic of the onset
of the OAE, followed by a fall to very low wvalues,
indicating regional or possibly global drawdown of the
geochemical species in question under anoxic to euxinic
conditions and indicating the importance of the local
environment (Hetzel et al., 2009).

As revealed in a past study of Biluo Co oil shales, the
carbon isotope curve displays the 6"°C values of the
kerogen fluctuating from —26.22%o to —23.53%0 PDB with
a positive excursion close to 2.17%., which, albeit
significantly smaller, may also have sea-level rise and has
been associated with other Early Toarcian OAEs in

calcareous nannofossils: Watznaueria

Europe (Chen et al., 2005). Previous studies indicate that
an inferred correlation of large positive 6"°C excursions
and sea level rise may not be directly related and might be
linked to other forcing factors that resulted in increased
organic carbon burial (Bjerrum et al., 2006). Nevertheless,
there is good evidence for a relationship between Ce with
eustatic sea level changes (Wilde, 1987; Wilde et al.,
1996; Yang et al., 1999). The ventilation model was
predicted with more negative Ce anomaly values found
during warmer climates and transgression conditions and
more positive values found during cooler to glacial
climates and regressive conditions. We interpret the long-
term negative Ceynom values(<—0.10) in the middle parts of
Amdo 114 station section and associated surface water
warming as being related to a major sea-level rise (Chen et
al., 2012). In contrast, the formation of the black shales in
the lower and upper part of the studied succession took
place during a cooler (Ceyom values >—0.10), lower
surface water productivity, and lower sea-level. A sea-
level change might have affected the water mass exchange
and bottom ventilation (Herrle et al., 2010). Higher sea
level probably enabled an enhanced exchange of water
masses; therefore, the formation of the Biluo Co black
shales was probably caused by increased productivity and
organic matter flux, leading to enhanced preservation of
organic material under surface waters. But the sedimentary
mechanism of the gypsums in the lower part of the Biluo
Co is still debatable and further studied. The lower and
upper parts of the Amdo 114 station show a sea-level fall
suggesting a restriction of water mass exchange. The
reduced water mass exchange could have caused slightly
reduced deep water formation and less mixing of surface
water.
6 Conclusions

The Early Toarcian and Middle-Late Tithonian
(Jurassic) black shales in Biluo Co and Amdo 114 station
deposited under the oxygen-depleted conditions and
lacked benthic life but had bloom of -calcareous
nannofossils. On the basis of trace elements and REE,
these  stratigraphic  successions  exhibit  relative
enrichments with Ba, Sr, Mo, V, Ni, Cr, Co, and U, while
the REE is characterized by LREE enrichment, HREE
depletion, and flat-shale type REE distribution of PAAS-
normalized. The Ce anomalies indicate the sea level
fluctuations in the studied successions. The formation of
the Biluo Co and Amdo 114 station black shales couplets
are caused by different mechanisms in accordance to the
trace elements, rare earth elements and the calcareous
nannofissils, including the sea level fluctuations and
higher surface water productivity.
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